Multiscale simulations of Ge–Sb–Se–Te phase-change alloys for photonic memory applications

Huiyu Li , Hanyi Zhang , Wanting Ma , Yuan Gao , Wen Zhou , Wei Zhang

Journal of Materials Informatics ›› 2026, Vol. 6 ›› Issue (1) : 3

PDF
Journal of Materials Informatics ›› 2026, Vol. 6 ›› Issue (1) :3 DOI: 10.20517/jmi.2025.47
Research Article

Multiscale simulations of Ge–Sb–Se–Te phase-change alloys for photonic memory applications

Author information +
History +
PDF

Abstract

Phase-change materials (PCMs) are among the most promising candidates for next-generation non-volatile memory and neuromorphic computing technologies. However, their photonic applications are hindered by a trade-off between refractive index contrast and optical absorption losses. Artificial intelligence-assisted computational approaches are essential for fundamental understanding and device modeling of PCMs. In this work, we systematically investigate structural and optical properties of crystalline and amorphous Ge2Sb2SexTe5-x (x = 0 to 4) alloys using density functional theory (DFT), and then use the DFT-computed optical parameters for modeling and optimization of photonic computing devices via the finite-difference time-domain method. Among the investigated compositions, we identify a promising candidate, i.e., Ge2Sb2Se3Te2 for all-optical switching on a silicon-on-insulator (SOI) platform. Finally, we design a dual-disk PCM waveguide structure on SOI with an enhanced switching contrast and a low optical loss for scalable photonic neural network application.

Keywords

Phase-change materials / Ge–Sb–Se–Te alloys / optical properties / device modeling / photonic computing

Cite this article

Download citation ▾
Huiyu Li, Hanyi Zhang, Wanting Ma, Yuan Gao, Wen Zhou, Wei Zhang. Multiscale simulations of Ge–Sb–Se–Te phase-change alloys for photonic memory applications. Journal of Materials Informatics, 2026, 6(1): 3 DOI:10.20517/jmi.2025.47

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wuttig M.Phase-change materials for rewriteable data storage.Nat Mater2007;6:824-32

[2]

Sebastian A,Khaddam-Aljameh R.Memory devices and applications for in-memory computing.Nat Nanotechnol2020;15:529-44

[3]

Lanza M,Aguirre F.The growing memristor industry.Nature2025;640:613-22

[4]

Kim HJ,Williams C.Versatile spaceborne photonics with chalcogenide phase-change materials.NPJ Microgravity2024;10:20 PMCID:PMC10879159

[5]

Liu B,Zhou J.Reversible crystalline-crystalline transitions in chalcogenide phase-change materials.Adv Funct Mater2024;34:2407239

[6]

Li XD,Wang BQ.Resistive memory devices at the thinnest limit: progress and challenges.Adv Mater2024;36:e2307951

[7]

Wang Z,Burr GW.Resistive switching materials for information processing.Nat Rev Mater2020;5:173-95

[8]

Wuttig M,Taubner T.Phase-change materials for non-volatile photonic applications.Nature Photon2017;11:465-76

[9]

Sebastian A,Burr GW,Brightsky M.Tutorial: Brain-inspired computing using phase-change memory devices.J Appl Phys2018;124:111101

[10]

Youngblood N,Pernice WHP.Integrated optical memristors.Nat Photon2023;17:561-72

[11]

Zeni C,Zügner D.A generative model for inorganic materials design.Nature2025;639:624-32 PMCID:PMC11922738

[12]

Merchant A,Schoenholz SS,Cheon G.Scaling deep learning for materials discovery.Nature2023;624:80-5 PMCID:PMC10700131

[13]

Yuan J,Yang Y.Applications of machine learning method in high-performance materials design: a review.J Mater Inf2024;4:14

[14]

Xu D,Huo X,Yang M.Advances in data-assisted high-throughput computations for material design.MGE Advances2023;1:e11

[15]

Xu M,Miao X.Deep machine learning unravels the structural origin of mid-gap states in chalcogenide glass for high-density memory integration.InfoMat2022;4:e12315

[16]

Schön CF,Mattes C.Classification of properties and their relation to chemical bonding: essential steps toward the inverse design of functional materials.Sci Adv2022;8:eade0828 PMCID:PMC9699668

[17]

Kusne AG,Wu C.On-the-fly closed-loop materials discovery via Bayesian active learning.Nat Commun2020;11:5966 PMCID:PMC7686338

[18]

Yuan H,Zhuang G,Hui J.High-throughput screening of superlattice-like Ge-Sb-M (M = Sn, Se) thin films for multi-level phase change photonics materials.Microstructures2025;5:2025053

[19]

Liu Y,Zheng H.High-throughput screening for phase-change memory materials.Adv Funct Mater2021;31:2009803

[20]

Sun S,Jiang Y.High-throughput screening to identify two-dimensional layered phase-change chalcogenides for embedded memory applications.npj Comput Mater2024;10:1387

[21]

Clima S,Ravsher T.In silico screening for As/Se-free ovonic threshold switching materials.npj Comput Mater2023;9:1043

[22]

Abou El Kheir, O.; Bernasconi, M. High-throughput calculations on the decomposition reactions of off-stoichiometry GeSbTe alloys for embedded memories.Nanomaterials2021;11:2382 PMCID:PMC8464663

[23]

Sosso GC,Caravati S,Bernasconi M.Neural network interatomic potential for the phase change material GeTe.Phys Rev B2012;85:174103

[24]

Wang G,Zhou J.PotentialMind: graph convolutional machine learning potential for Sb–Te binary compounds of multiple stoichiometries.J Phys Chem C2023;127:24724-33

[25]

Mocanu FC,Lee TH.Modeling the phase-change memory material, Ge2Sb2Te5, with a machine-learned interatomic potential.J Phys Chem B2018;122:8998-9006

[26]

Sosso GC,Caravati S,Behler J.Fast crystallization of the phase change compound GeTe by large-scale molecular dynamics simulations.J Phys Chem Lett2013;4:4241-6

[27]

Dragoni D,Bernasconi M.Mechanism of amorphous phase stabilization in ultrathin films of monoatomic phase change material.Nanoscale2021;13:16146-55

[28]

Bosoni E,Donadio D,Behler J.Atomistic simulations of thermal conductivity in GeTe nanowires.J Phys D Appl Phys2020;53:054001

[29]

Abou El Kheir, O.; Bonati, L.; Parrinello, M.; Bernasconi, M. Unraveling the crystallization kinetics of the Ge2Sb2Te5 phase change compound with a machine-learned interatomic potential.npj Comput Mater2024;10:1217

[30]

Mo P,Zhao Z.High-speed and low-power molecular dynamics processing unit (MDPU) with ab initio accuracy.npj Comput Mater2024;10:1422

[31]

Chen Y,Bernasconi M.Atomistic study of the configurational entropy and the fragility of supercooled liquid GeTe.Adv Funct Mater2024;34:2314264

[32]

Yu W,Wan X.High-accuracy machine-learned interatomic potentials for the phase change material Ge3Sb6Te5.Chem Mater2023;35:6651-8

[33]

Ortner T,Vasilopoulos A.Rapid learning with phase-change memory-based in-memory computing through learning-to-learn.Nat Commun2025;16:1243 PMCID:PMC11787340

[34]

Li H,Duan W.Ab initio artificial intelligence: future research of Materials Genome Initiative.MGE Advances2023;1:e16

[35]

Syed GS,Sebastian A.Phase-change memory for in-memory computing.Chem Rev2025;125:5163-94 PMCID:PMC12164277

[36]

Sun Z,Ahuja R.Structure of phase change materials for data storage.Phys Rev Lett2006;96:055507

[37]

Wuttig M,Wamwangi D,Gillessen M.The role of vacancies and local distortions in the design of new phase-change materials.Nat Mater2007;6:122-8

[38]

Caravati S,Kühne TD,Parrinello M.Coexistence of tetrahedral- and octahedral-like sites in amorphous phase change materials.Appl Phys Lett2007;91:171906

[39]

Akola J.Structural phase transitions on the nanoscale: the crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe.Phys Rev B2007;76:235201

[40]

Wełnic W,Reining L.Origin of the optical contrast in phase-change materials.Phys Rev Lett2007;98:236403

[41]

Gan Y,Sun Z.Prediction of the atomic structure and thermoelectric performance for semiconducting Ge1Sb6Te10 from DFT calculations.J Mater Inf2021;1:2

[42]

Hempelmann J,Ertural C.The orbital origins of chemical bonding in Ge-Sb-Te phase-change materials.Angew Chem Int Ed Engl2022;61:e202115778 PMCID:PMC9306605

[43]

Song Z,Cheng Y.12-state multi-level cell storage implemented in a 128 Mb phase change memory chip.Nanoscale2021;13:10455-61

[44]

Redaelli A,Annunziata R.Material and process engineering challenges in Ge-rich GST for embedded PCM.Mater Sci Semicond Process2022;137:106184

[45]

Deringer VL,Csányi G.Machine learning interatomic potentials as emerging tools for materials science.Adv Mater2019;31:e1902765

[46]

Zhou Y,Ma E.Device-scale atomistic modelling of phase-change memory materials.Nat Electron2023;6:746-54

[47]

Abou El Kheir, O.; Bernasconi, M. Million-atom simulation of the set process in phase change memories at the real device scale.Adv Elect Mater2025;e2500110

[48]

Dunton OR,Starr FW.Computationally efficient machine-learned model for GST phase change materials via direct and indirect learning.J Chem Phys2025;162:034501

[49]

Wang G,Zhang X,Zhou J.Machine learning interatomic potential: bridge the gap between small-scale models and realistic device-scale simulations.iScience2024;27:109673 PMCID:PMC11033164

[50]

Wang X,Zhang H.Multiscale simulations of growth-dominated Sb2Te phase-change material for non-volatile photonic applications.npj Comput Mater2023;9:1098

[51]

Wuttig M,Gonze X,Raty JY.Incipient metals: functional materials with a unique bonding mechanism.Adv Mater2018;30:e1803777

[52]

Raty JY,Golub P,Gatti C.A quantum-mechanical map for bonding and properties in solids.Adv Mater2019;31:e1806280

[53]

Zhang Q,Li J,Gu T.Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit.Opt Lett2018;43:94-7

[54]

Zhang Y,Li J.Broadband transparent optical phase change materials for high-performance nonvolatile photonics.Nat Commun2019;10:4279 PMCID:PMC6768866

[55]

Zhang Y,Ríos C.Transient tap couplers for wafer-level photonic testing based on optical phase change materials.ACS Photonics2021;8:1903-8

[56]

Zhang Y,Liang J.Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material.Nat Nanotechnol2021;16:661-6

[57]

Wei M,Tang B.Monolithic back-end-of-line integration of phase change materials into foundry-manufactured silicon photonics.Nat Commun2024;15:2786 PMCID:PMC10981744

[58]

Siegrist T,Volker H.Disorder-induced localization in crystalline phase-change materials.Nat Mater2011;10:202-8

[59]

Yamada N.Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory.J Appl Phys2000;88:7020-8

[60]

Park J,Baik H,Jeong H.Phase-change behavior of stoichiometric Ge2Sb2Te5 in phase-change random access memory.J Electrochem Soc2007;154:H139

[61]

Zhang B,Shen Z.Element-resolved atomic structure imaging of rocksalt Ge2Sb2Te5 phase-change material.Appl Phys Lett2016;108:191902

[62]

Zhang H,Zhang W.First-principles investigation of amorphous Ge-Sb-Se-Te optical phase-change materials.Opt Mater Express2022;12:2497

[63]

Hutter J,Schiffmann F.cp2k: atomistic simulations of condensed matter systems.WIREs Comput Mol Sci2014;4:15-25

[64]

Kresse G.Ab initio molecular dynamics for liquid metals.J Non Cryst Solids1995;192-3:222-9

[65]

Kresse G.From ultrasoft pseudopotentials to the projector augmented-wave method.Phys Rev B1999;59:1758-75

[66]

Perdew JP,Ernzerhof M.Generalized gradient approximation made simple.Phys Rev Lett1996;77:3865-8

[67]

IncAnsys. Lumerical FDTD solutions. https://www.ansys.com/products/optics/fdtd. (accessed 13 Aug 2025)

[68]

Hase M,Mitrofanov K,Tominaga J.Femtosecond structural transformation of phase-change materials far from equilibrium monitored by coherent phonons.Nat Commun2015;6:8367 PMCID:PMC4598557

[69]

Wu D,Wang N.Resonant multilevel optical switching with phase change material GST.Nanophotonics2022;11:3437-46 PMCID:PMC11501755

[70]

Meng J,Nouri BM.Electrical programmable multilevel nonvolatile photonic random-access memory.Light Sci Appl2023;12:189 PMCID:PMC10393989

[71]

Kooi BJ.Electron diffraction and high-resolution transmission electron microscopy of the high temperature crystal structures of GexSb2Te3+x (x = 1,2,3) phase change material.J Appl Phys2002;92:3584-90

[72]

Heyd J,Ernzerhof M.Hybrid functionals based on a screened Coulomb potential.J Chem Phys2003;118:8207-15

[73]

Koch C,Dankwort T.Enhanced temperature stability and exceptionally high electrical contrast of selenium substituted Ge2Sb2Te5 phase change materials.RSC Adv2017;7:17164-72

[74]

Caravati S,Parrinello M.First principles study of the optical contrast in phase change materials.J Phys Condens Matter2010;22:315801

[75]

Wełnic W,Botti S.Local atomic order and optical properties in amorphous and laser-crystallized GeTe.C R Phys2009;10:514-27

[76]

Xu M,Qiao C.Unraveling the structural and bonding nature of antimony sesquichalcogenide glass for electronic and photonic applications.J Mater Chem C2021;9:8057-65

[77]

Huang B.Bonding origin of optical contrast in phase-change memory materials.Phys Rev B2010;81:081204

[78]

Feldmann J,Karpov M.Parallel convolutional processing using an integrated photonic tensor core.Nature2021;589:52-8

[79]

Feldmann J,Wright CD,Pernice WHP.All-optical spiking neurosynaptic networks with self-learning capabilities.Nature2019;569:208-14 PMCID:PMC6522354

[80]

Shastri BJ,Ferreira de Lima T.Photonics for artificial intelligence and neuromorphic computing.Nat Photonics2021;15:102-14

[81]

Li W,Song S.Ultracompact high-extinction-ratio nonvolatile on-chip switches based on structured phase change materials.Laser Photonics Rev2022;16:2100717

PDF

13

Accesses

0

Citation

Detail

Sections
Recommended

/