PDF
Abstract
Understanding interactions between reactive species and surfaces remains a fundamental challenge in materials science and heterogeneous catalysis. Central to this challenge is the efficient and accurate generation of realistic surfaces and intermediate structures. Despite growing efforts, a universal and systematic approach to surface structure generation is still lacking, particularly for complex interfaces. Existing automated protocols often require extensive computations to identify stable configurations. Recent advances in dataset availability and machine learning techniques, especially in generative models, are beginning to show promise for tasks such as catalyst structure generation. In this perspective, we highlight the emerging capabilities of generative models in catalytic research and outline future directions for their applications. These include property-guided surface structure generation, efficient sampling of adsorption geometries, and the generation of complex transition-state structures. We aim to provide catalysis researchers with a clear view of current progress, outline key challenges, and identify opportunities for integrating generative models into the design and discovery of heterogeneous catalysts.
Keywords
Generative model
/
machine learning
/
heterogeneous catalyst
/
surface science
Cite this article
Download citation ▾
Chao Yang, Lulu Wang, Jinbo Zhu, Pengfei Ou.
Heterogeneous catalyst design by generative models.
Journal of Materials Informatics, 2025, 5(4): 46 DOI:10.20517/jmi.2025.38
| [1] |
Vogt C.The concept of active site in heterogeneous catalysis.Nat Rev Chem2022;6:89-111
|
| [2] |
Friend CM.Heterogeneous catalysis: a central science for a sustainable future.Acc Chem Res2017;50:517-21
|
| [3] |
Huang T,Wu S.Visualizing the structural evolution of individual active sites in MoS2 during electrocatalytic hydrogen evolution reaction.Nat Catal2024;7:646-54
|
| [4] |
Nørskov JK,Abild-Pedersen F.Fundamental Concepts in Heterogeneous Catalysis. John Wiley & Sons; 2014.
|
| [5] |
Lai NS,Zhong X.Artificial intelligence (AI) workflow for catalyst design and optimization.Ind Eng Chem Res2023;62:17835-48
|
| [6] |
Sharma U,Kitchin JR,Janik MJ.Enumeration of surface site nuclearity and shape in a database of intermetallic low-index surface facets.J Catal2024;440:115795
|
| [7] |
Tran K.Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution.Nat Catal2018;1:696-703
|
| [8] |
Reveles JU.Geometry optimization in density functional methods.J Comput Chem2004;25:1109-16
|
| [9] |
Ye J,Mei D.Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): a DFT study.ACS Catal2013;3:1296-306
|
| [10] |
Liu ZP.General rules for predicting where a catalytic reaction should occur on metal surfaces: a density functional theory study of C-H and C-O bond breaking/making on flat, stepped, and kinked metal surfaces.J Am Chem Soc2003;125:1958-67
|
| [11] |
Ko TW.Recent advances and outstanding challenges for machine learning interatomic potentials.Nat Comput Sci2023;3:998-1000
|
| [12] |
Pitfield J,Tang Z.Augmentation of universal potentials for broad applications.Phys Rev Lett2025;134:056201
|
| [13] |
Jung H,Stocker S,Margraf JT.Machine-learning driven global optimization of surface adsorbate geometries.npj Comput Mater2023;9:1065
|
| [14] |
Xu J,Han Y.Atomistic insights into the oxidation of flat and stepped platinum surfaces using large-scale machine learning potential-based grand-canonical Monte Carlo.ACS Catal2022;12:14812-24
|
| [15] |
Yang M,Polino D.Using metadynamics to build neural network potentials for reactive events: the case of urea decomposition in water.Catal Today2022;387:143-9
|
| [16] |
Sanchez-Lengeling B.Inverse molecular design using machine learning: generative models for matter engineering.Science2018;361:360-5
|
| [17] |
Park H,Walsh A.Has generative artificial intelligence solved inverse materials design?.Matter2024;7:2355-67
|
| [18] |
Chenebuah ET,Tchagang AB.A deep generative modeling architecture for designing lattice-constrained perovskite materials.npj Comput Mater2024;10:1381
|
| [19] |
Gómez-Bombarelli R,Duvenaud D.Automatic chemical design using a data-driven continuous representation of molecules.ACS Cent Sci2018;4:268-76 PMCID:PMC5833007
|
| [20] |
Jin W,Jaakkola T. Junction tree variational autoencoder for molecular graph generation. arXiv 2018, arXiv:1802.04364. https://doi.org/10.48550/arXiv.1802.04364. (accessed 4 Jul 2025)
|
| [21] |
De Cao, N.; Kipf, T. MolGAN: an implicit generative model for small molecular graphs. arXiv 2018, arXiv:1805.11973. https://doi.org/10.48550/arXiv.1805.11973. (accessed 4 Jul 2025)
|
| [22] |
You J,Ying R,Leskovec J. Graph convolutional policy network for goal-directed molecular graph generation. arXiv 2018, arXiv:1806.02473. https://doi.org/10.48550/arXiv.1806.02473. (accessed 4 Jul 2025)
|
| [23] |
Hoogeboom E,Vignac C. Equivariant diffusion for molecule generation in 3D. arXiv 2022, arXiv:2203.17003. https://doi.org/10.48550/arXiv.2203.17003. (accessed 4 Jul 2025)
|
| [24] |
Zhou G,Ding Q.Uni-Mol: a universal 3D molecular representation learning framework.ChemRxiv2023;
|
| [25] |
Nouira A,Crivello JC. CrystalGAN: learning to discover crystallographic structures with generative adversarial networks. arXiv 2018, arXiv:1810.11203. https://doi.org/10.48550/arXiv.1810.11203. (accessed 4 Jul 2025)
|
| [26] |
Xie T,Ganea OE,Jaakkola T. Crystal diffusion variational autoencoder for periodic material generation. arXiv 2021, arXiv:2110.06197. https://doi.org/10.48550/arXiv.2110.06197. (accessed 4 Jul 2025)
|
| [27] |
Antunes LM,Grau-Crespo R.Crystal structure generation with autoregressive large language modeling.Nat Commun2024;15:10570 PMCID:PMC11624194
|
| [28] |
Zeni C,Zügner D.A generative model for inorganic materials design.Nature2025;639:624-32 PMCID:PMC11922738
|
| [29] |
Ishikawa A.Heterogeneous catalyst design by generative adversarial network and first-principles based microkinetics.Sci Rep2022;12:11657 PMCID:PMC9270484
|
| [30] |
Rønne N,Hammer B.Generative diffusion model for surface structure discovery.Phys Rev B2024;110:235427
|
| [31] |
Mok DH.Generative pretrained transformer for heterogeneous catalysts.J Am Chem Soc2024;146:33712-22
|
| [32] |
Song Z,Lu S,Zhou Q.Inverse design of promising electrocatalysts for CO2 reduction via generative models and bird swarm algorithm.Nat Commun2025;16:1053 PMCID:PMC11770065
|
| [33] |
Kingma DP. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114. https://doi.org/10.48550/arXiv.1312.6114. (accessed 4 Jul 2025)
|
| [34] |
Goodfellow I,Mirza M.Generative adversarial networks.Commun ACM2020;63:139-44
|
| [35] |
Menon D.A generative approach to materials discovery, design, and optimization.ACS Omega2022;7:25958-73 PMCID:PMC9352221
|
| [36] |
Vaswani A,Parmar N. Attention is all you need. arXiv 2017, arXiv:1706.03762. https://doi.org/10.48550/arXiv.1706.03762. (accessed 4 Jul 2025)
|
| [37] |
Ho J,Abbeel P. Denoising diffusion probabilistic models. arXiv 2020, arXiv:2006.11239. https://doi.org/10.48550/arXiv.2006.11239. (accessed 4 Jul 2025)
|
| [38] |
Yan K,Ling H. Invariant tokenization of crystalline materials for language model enabled generation. arXiv 2025, arXiv:2503.00152. https://doi.org/10.48550/arXiv.2503.00152. (accessed 4 Jul 2025)
|
| [39] |
DeepSeek-AI ,Yang D. DeepSeek-R1: incentivizing reasoning capability in LLMs via reinforcement learning. arXiv 2025, arXiv:2501.12948. https://doi.org/10.48550/arXiv.2501.12948. (accessed 4 Jul 2025)
|
| [40] |
Martinelli DD.Generative machine learning for de novo drug discovery: a systematic review.Comput Biol Med2022;145:105403
|
| [41] |
Kim S,Kim WY.Diffusion-based generative AI for exploring transition states from 2D molecular graphs.Nat Commun2024;15:341 PMCID:PMC10771475
|
| [42] |
Duan C,Jia H.Accurate transition state generation with an object-aware equivariant elementary reaction diffusion model.Nat Comput Sci2023;3:1045-55
|