Machine learning-driven design and optimization of electronic packaging: applications and future developments

Xiangyu Chen , Sirui He , Kyung-Wook Paik , Yew-Hoong Wong , Shuye Zhang

Journal of Materials Informatics ›› 2025, Vol. 5 ›› Issue (4) : 47

PDF
Journal of Materials Informatics ›› 2025, Vol. 5 ›› Issue (4) :47 DOI: 10.20517/jmi.2025.26
Review

Machine learning-driven design and optimization of electronic packaging: applications and future developments

Author information +
History +
PDF

Abstract

Machine learning (ML) provides robust solutions for electronic packaging, where growing complexity and miniaturization challenge traditional methods in design, defect detection, and performance optimization. This review systematically covers ML applications across key areas in electronic packaging, such as defect detection, material optimization, and reliability analysis, discussing key algorithms, data workflows, inherent challenges, and prospects. It aims to provide a clear roadmap and reference for effectively applying ML to innovate in this rapidly evolving field. However, addressing persistent challenges in data quality, model adaptability, and integration with established engineering practices remains vital for continued progress in this domain.

Keywords

Machine learning / electronics packaging / data processing / defect detection / life prediction / reliability analysis

Cite this article

Download citation ▾
Xiangyu Chen, Sirui He, Kyung-Wook Paik, Yew-Hoong Wong, Shuye Zhang. Machine learning-driven design and optimization of electronic packaging: applications and future developments. Journal of Materials Informatics, 2025, 5(4): 47 DOI:10.20517/jmi.2025.26

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lau JH.Recent advances and trends in advanced packaging.IEEE Trans Compon Packag Manufact Technol2022;12:228-52

[2]

Tong XC.Electronic packaging materials and their functions in thermal managements. advanced materials for thermal management of electronic packaging. New York: Springer; 2011. pp. 131-67.

[3]

Tang S,Hu YB.Brief overview of the impact of thermal stress on the reliability of through silicon via: analysis, characterization, and enhancement.Mater Sci Semicond Process2024;183:108745

[4]

Zhang S,Ding T.Investigation of isothermal aged Sn-3Ag-0.5Cu/Sn58Bi-Co hybrid solder joints on ENIG and ENEPIG substrate with various mechanical performances.Mater Today Commun2024;39:108609

[5]

Hu W,Qiu H.Discovering polyimides and their composites with targeted mechanical properties through explainable machine learning.J Mater Inf2025;5:1

[6]

Li X,Pan H,Ding W.An integrated design of novel RAFM steels with targeted microstructures and tensile properties using machine learning and CALPHAD.J Mater Inf2024;4:27

[7]

Jain A,Nagalapatti L.Overview and importance of data quality for machine learning tasks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020. pp. 3561-2.

[8]

Chen H,Ding J.Data evaluation and enhancement for quality improvement of machine learning.IEEE Trans Rel2021;70:831-47

[9]

Kotsiantis SB,Pintelas PE.Machine learning: a review of classification and combining techniques.Artif Intell Rev2006;26:159-90

[10]

Sarker IH.Machine learning: algorithms, real-world applications and research directions.SN Comput Sci2021;2:160 PMCID:PMC7983091

[11]

Zhu L,Sun Z.Materials data toward machine learning: advances and challenges.J Phys Chem Lett2022;13:3965-77

[12]

Sheppard D.Robert Le Rossignol, 1884-1976: Engineer of the ‘Haber’ process.Notes Rec R Soc Lond2017;71:263-96 PMCID:PMC5554788

[13]

Hanak JJ.The “multiple-sample concept” in materials research: synthesis, compositional analysis and testing of entire multicomponent systems.J Mater Sci1970;5:964-71

[14]

Xiang XD,Briceño G.A combinatorial approach to materials discovery.Science1995;268:1738-40

[15]

Green ML,Hattrick-Simpers JR.Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies.Appl Phys Rev2017;4:011105

[16]

Kohn W.Self-consistent equations including exchange and correlation effects.Phys Rev1965;140:A1133-8

[17]

Hohenberg P.Inhomogeneous electron gas.Phys Rev1964;136:B864-71

[18]

Shen L,Yang T,Feng YP.High-throughput computational discovery and intelligent design of two-dimensional functional materials for various applications.Acc Mater Res2022;3:572-83

[19]

Jin K,Fackler S.Combinatorial search of superconductivity in Fe-B composition spreads.APL Mater2013;1:042101

[20]

Wu J,Sun Y.Hall effect in quantum critical charge-cluster glass.Proc Natl Acad Sci U S A2016;113:4284-9 PMCID:PMC4843445

[21]

Stanev V,Kusne AG.Machine learning modeling of superconducting critical temperature.npj Comput Mater2018;4:85

[22]

Feng R,Gao MC.High-throughput design of high-performance lightweight high-entropy alloys.Nat Commun2021;12:4329 PMCID:PMC8282813

[23]

Rittiruam M,Setasuban S.High-throughput materials screening algorithm based on first-principles density functional theory and artificial neural network for high-entropy alloys.Sci Rep2022;12:16653 PMCID:PMC9534987

[24]

Curtarolo S,Ceder G.Accuracy of ab initio methods in predicting the crystal structures of metals: a review of 80 binary alloys.Calphad2005;29:163-211

[25]

Mueller T,Jain A.Evaluation of tavorite-structured cathode materials for lithium-ion batteries using high-throughput computing.Chem Mater2011;23:3854-62

[26]

Aykol M,Hegde VI.High-throughput computational design of cathode coatings for Li-ion batteries.Nat Commun2016;7:13779 PMCID:PMC5171834

[27]

Benayad A,Heuer A.High-throughput experimentation and computational freeway lanes for accelerated battery electrolyte and interface development research.Adv Energy Mater2022;12:2102678

[28]

Liu B,Liu Y.Application of high-throughput first-principles calculations in ceramic innovation.J Mater Sci Technol2021;88:143-57

[29]

Zhang W,Zhou Y.Anti-perovskite carbides and nitrides A3BX: a new family of damage tolerant ceramics.J Mater Sci Technol2020;40:64-71

[30]

Kaufmann K,Mellor WM.Discovery of high-entropy ceramics via machine learning.npj Comput Mater2020;6:317

[31]

Gómez-Bombarelli R,Hirzel TD.Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach.Nat Mater2016;15:1120-7

[32]

Omar ÖH,Nematiaram T.High-throughput virtual screening for organic electronics: a comparative study of alternative strategies.J Mater Chem C Mater2021;9:13557-83 PMCID:PMC8515942

[33]

Li Y,Zhao R.Design of organic-inorganic hybrid heterostructured semiconductors via high-throughput materials screening for optoelectronic applications.J Am Chem Soc2022;144:16656-66

[34]

Yeo BC,Nam H.High-throughput computational-experimental screening protocol for the discovery of bimetallic catalysts.npj Comput Mater2021;7:605

[35]

Takahashi K,Le SD,Nishimura S.Synthesis of Heterogeneous catalysts in catalyst informatics to bridge experiment and high-throughput calculation.J Am Chem Soc2022;144:15735-44

[36]

Newbury DE.Elemental mapping of microstructures by scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS): extraordinary advances with the silicon drift detector (SDD).J Anal At Spectrom2013;28:973

[37]

Zhao J.Combinatorial approaches as effective tools in the study of phase diagrams and composition–structure–property relationships.Prog Mater Sci2006;51:557-631

[38]

Mine Y,Kraft O.Mechanical characterisation of hydrogen-induced quasi-cleavage in a metastable austenitic steel using micro-tensile testing.Scr Mater2016;113:176-9

[39]

Zhao J,Peluso LA.A diffusion multiple approach for the accelerated design of structural materials.MRS Bull2002;27:324-9

[40]

Butler EP.In situ experiments in the transmission electron microscope.Rep Prog Phys1979;42:833-95

[41]

Luo C,Wu X,Chu J.In situ transmission electron microscopy characterization and manipulation of two-dimensional layered materials beyond graphene.Small2017;13:1604259

[42]

Jiang Y,Han Y.Electron ptychography of 2D materials to deep sub-ångström resolution.Nature2018;559:343-9

[43]

Jiang C,Zhang H,Lu Y.Recent advances on in situ SEM mechanical and electrical characterization of low-dimensional nanomaterials.Scanning2017;2017:1985149 PMCID:PMC5676480

[44]

Wright SI.A review of in situ EBSD studies. In: Schwartz AJ, Kumar M, Adams BL, Field DP, editors. Electron backscatter diffraction in materials science. Boston: Springer US; 2009. pp. 329-37.

[45]

Luo Y,Hu YN.Cracking evolution behaviors of lightweight materials based on in situ synchrotron X-ray tomography: a review.Front Mech Eng2018;13:461-81

[46]

Neuville DR,Florian P.In situ high-temperature experiments.Rev Mineral Geochem2014;78:779-800

[47]

Xu H,Clauberg H,Acoff VL.New observation of nanoscale interfacial evolution in micro Cu–Al wire bonds by in-situ high resolution TEM study.Scr Mater2016;115:1-5

[48]

Malkorra I,Costa U.Multi-scale in-situ micro-mechanical characterization of Polymer Core Solder Ball (PCSB) coatings for BGA interconnections.Microelectron Reliab2023;148:115135

[49]

Zeng G,Gu Q.The influence of Ni and Zn additions on microstructure and phase transformations in Sn–0.7Cu/Cu solder joints.Acta Mater2015;83:357-71

[50]

Côté P,Ahmed N,Khomh F.Data cleaning and machine learning: a systematic literature review.Autom Softw Eng2024;31:453

[51]

Krishnan S,Franklin MJ. SampleClean: fast and reliable analytics on dirty data. Bull IEEE Comput Soc Tech Comm Data Eng 2015;38:59-75. https://sirrice.github.io/files/papers/sampleclean-overview.pdf. (accessed 3 Jul 2025)

[52]

Krishnan S,Goldberg K,Wu E.ActiveClean: an interactive data cleaning framework for modern machine learning. In Proceedings of the 2016 International Conference on Management of Data. 2016. pp. 2117-20.

[53]

Rekatsinas T,Ilyas IF. HoloClean: holistic data repairs with probabilistic inference. arXiv 2017, arXiv:1702.00820. https://doi.org/10.48550/arXiv.1702.00820. (accessed 3 Jul 2025)

[54]

Krishnan S. AlphaClean: automatic generation of data cleaning pipelines. arXiv 2019, arXiv:1904.11827. https://doi.org/10.48550/arXiv.1904.11827. (accessed 3 Jul 2025)

[55]

Karlaš B,Wu R. Nearest neighbor classifiers over incomplete information: from certain answers to certain predictions. arXiv 2020, arXiv:2005.05117. https://doi.org/10.48550/arXiv.2005.05117. (accessed 3 Jul 2025)

[56]

Li J,Wang S.Feature selection: a data perspective.ACM Comput Surv2018;50:1-45

[57]

Liu H.Feature selection for knowledge discovery and data mining. 1st edition. New York: Springer; 1998.

[58]

Agarwal S,Ranjan P.Newton’s second law based PSO for feature selection: Newtonian PSO.J Intell Fuzzy Syst2019;37:4923-35

[59]

Blum AL.Selection of relevant features and examples in machine learning.Artif Intell1997;97:245-71

[60]

Langley P. Elements of machine learning. San Francisco: Morgan Kaufmann Publishers; 1996. https://archive.org/details/elementsofmachin0000lang. (accessed 3 Jul 2025)

[61]

Hoque N,Kalita J.MIFS-ND: a mutual information-based feature selection method.Expert Syst Appl2014;41:6371-85

[62]

Guyon I,Kaelbling LP.An introduction to variable and feature selection.J Mach Learn Res2003;3:1157-82

[63]

Jović A,Bogunović N.A review of feature selection methods with applications. In 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia. May 25-29, 2015. IEEE; 2015. pp. 1200-5.

[64]

Cortizo JC.Multi criteria wrapper improvements to Naive Bayes learning. In: Corchado E, Yin H, Botti V, Fyfe C, editors. Intelligent data engineering and automated learning - IDEAL 2006. Berlin: Springer Berlin Heidelberg; 2006. pp. 419-27.

[65]

Liu C,Yang W.Global geometric similarity scheme for feature selection in fault diagnosis.Expert Syst Appl2014;41:3585-95

[66]

Benoît F,Miche Y,Lendasse A.Feature selection for nonlinear models with extreme learning machines.Neurocomputing2013;102:111-24

[67]

Ma S.Penalized feature selection and classification in bioinformatics.Brief Bioinform2008;9:392-403 PMCID:PMC2733190

[68]

Hsu H,Lu M.Hybrid feature selection by combining filters and wrappers.Expert Syst Appl2011;38:8144-50

[69]

Hyvärinen A.Survey of independent component analysis.Neural Comput Surv1999;2:94-128https://members.loria.fr/MOBerger/Enseignement/Master2/Documents/surveyICA.pdf. (accessed 3 Jul 2025)

[70]

Zheng Y,Daniel E.An automated drusen detection system for classifying age-related macular degeneration with color fundus photographs. In 2013 IEEE 10th International Symposium on Biomedical Imaging, San Francisco, USA. Apr 17-11, 2013. IEEE; 2013. pp. 1448-51.

[71]

Cateni S,Vannocci M.Variable selection and feature extraction through artificial intelligence techniques. In: Freitas L, editor. Multivariate analysis in management, engineering and the sciences. InTech; 2013.

[72]

Khalid S,Nasreen S.A survey of feature selection and feature extraction techniques in machine learning. In 2014 Science and Information Conference, London, UK. Aug 27-29, 2014. IEEE; 2014. pp. 372-8.

[73]

Aksoy S.Feature normalization and likelihood-based similarity measures for image retrieval.Pattern Recognit Lett2001;22:563-82

[74]

Aksu G,Eser MT.The effect of the normalization method used in different sample sizes on the success of artificial neural network model.Int J Assess Tools Educ2019;6:170-92

[75]

Sola J.Importance of input data normalization for the application of neural networks to complex industrial problems.IEEE Trans Nucl Sci1997;44:1464-8

[76]

Hsu CW,Lin CJ. A practical guide to support vector classification. 2003. https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf. (accessed 3 Jul 2025)

[77]

van den Berg, R. A.; Hoefsloot, H. C.; Westerhuis, J. A.; Smilde, A. K.; van der Werf, M. J. Centering, scaling, and transformations: improving the biological information content of metabolomics data.BMC Genomics2006;7:142 PMCID:PMC1534033

[78]

Craig A,Holmes E,Lindon JC.Scaling and normalization effects in NMR spectroscopic metabonomic data sets.Anal Chem2006;78:2262-7

[79]

Fukunaga K. Introduction to statistical pattern recognition. 2nd edition. https://cdn.preterhuman.net/texts/science_and_technology/artificial_intelligence/Pattern_recognition/Introduction%20to%20Statistical%20Pattern%20Recognition%202nd%20Ed%20-%20%20Keinosuke%20Fukunaga.pdf. (accessed 3 Jul 2025)

[80]

Reverter A,McWilliam S.Validation of alternative methods of data normalization in gene co-expression studies.Bioinformatics2005;21:1112-20

[81]

Noda I.Scaling techniques to enhance two-dimensional correlation spectra.J Mol Struct2008;883-4:216-27

[82]

Eriksson L,Worth AP,McDowell RM.Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs.Environ Health Perspect2003;111:1361-75 PMCID:PMC1241620

[83]

Kvalheim OM,Liang Y.Preprocessing of analytical profiles in the presence of homoscedastic or heteroscedastic noise.Anal Chem1994;66:43-51

[84]

Han J. Data mining: concepts and techniques. https://mitmecsept.wordpress.com/wp-content/uploads/2017/04/data-mining-concepts-and-techniques-2nd-edition-impressao.pdf. (accessed 3 Jul 2025)

[85]

Dougherty G.Pattern recognition and classification: an introduction. New York; Springer; 2013.

[86]

li W.A method of SVM with normalization in intrusion detection.Procedia Environ Sci2011;11:256-62

[87]

Jain A,Ross A.Score normalization in multimodal biometric systems.Pattern Recognit2005;38:2270-85

[88]

Ruppert D.Robust statistics: the approach based on influence functions.Technometrics1987;29:240-1

[89]

Priddy KL.Artificial neural networks : an introduction. New Delhi: Prentice-Hall India; 2007.

[90]

Huang G,van der Maaten L. Densely connected convolutional networks. arXiv 2016, arXiv:1608.06993. https://doi.org/10.48550/arXiv.1608.06993. (accessed 3 Jul 2025)

[91]

Zhou P,Geng C,Xu Y.Scale-transferrable object detection. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA. Jun 18-23, 2018. IEEE; 2018. pp. 528-38.

[92]

Fukushima K.Neocognitron: a new algorithm for pattern recognition tolerant of deformations and shifts in position.Pattern Recognit1982;15:455-69

[93]

Lecun Y,Bengio Y.Gradient-based learning applied to document recognition.Proc IEEE1998;86:2278-324

[94]

Alom MZ,Yakopcic C. The history began from AlexNet: a comprehensive survey on deep learning approaches. arXiv 2018, arXiv:1803.01164. https://doi.org/10.48550/arXiv.1803.01164. (accessed 3 Jul 2025)

[95]

Simonyan K. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. https://doi.org/10.48550/arXiv.1409.1556. (accessed 3 Jul 2025)

[96]

He K,Ren S. Deep residual learning for image recognition. arXiv 2015, arXiv:1512.03385. https://doi.org/10.48550/arXiv.1512.03385. (accessed 3 Jul 2025)

[97]

Farizhandi AAK,Mamivand M.Deep learning approach for chemistry and processing history prediction from materials microstructure.Sci Rep2022;12:4552 PMCID:PMC8927426

[98]

Tan M. EfficientNet: rethinking model scaling for convolutional neural networks. arXiv 2019, arXiv:1905.11946. https://doi.org/10.48550/arXiv.1905.11946. (accessed 3 Jul 2025)

[99]

Kondo R,Masuoka Y,Asahi R.Microstructure recognition using convolutional neural networks for prediction of ionic conductivity in ceramics.Acta Mater2017;141:29-38

[100]

Kunwar A,Sun J,Ma H.Convolutional neural network model for synchrotron radiation imaging datasets to automatically detect interfacial microstructure: an in situ process monitoring tool during solar PV ribbon fabrication.Sol Energy2021;224:230-44

[101]

Long J,Darrell T. Fully convolutional networks for semantic segmentation. arXiv 2014, arXiv:1411.4038. https://doi.org/10.48550/arXiv.1411.4038. (accessed 3 Jul 2025)

[102]

Guo M,Liu J.Attention mechanisms in computer vision: a survey.Comp Visual Med2022;8:331-68

[103]

Qu J,Dong W,Xie W.A multilevel encoder–decoder attention network for change detection in hyperspectral images.IEEE Trans Geosci Remote Sensing2022;60:1-13

[104]

Hou Q,Hu X,Tu Z.Deeply supervised salient object detection with short connections.IEEE Trans Pattern Anal Mach Intell2019;41:815-28

[105]

Wang Z,Shao Y.LSTM-convolutional-BLSTM encoder-decoder network for minimum mean-square error approach to speech enhancement.Appl Acoust2021;172:107647

[106]

Garg S.A CNN encoder decoder LSTM model for sustainable wind power predictive analytics.Sustain Comput Inform Syst2023;38:100869

[107]

Tong J,Fang S,Zhang K.Hourly solar irradiance forecasting based on encoder–decoder model using series decomposition and dynamic error compensation.Energy Convers Manag2022;270:116049

[108]

Andreieva V.Generalization of cross-entropy loss function for image classification.Mohyl Math J2021;3:3-10

[109]

Gao Z,Mei T,Zi Y. An enhanced encoder-decoder network architecture for reducing information loss in image semantic segmentation. arXiv 2024, arXiv:2406.01605. https://doi.org/10.48550/arXiv.2406.01605. (accessed 3 Jul 2025)

[110]

Guo Q,Xiao D.A novel multi-label pest image classifier using the modified Swin Transformer and soft binary cross entropy loss.Eng Appl Artif Intell2023;126:107060

[111]

Guo C,Chen Y.Multi-stage attentive network for motion deblurring via binary cross-entropy loss.Entropy2022;24:1414 PMCID:PMC9601862

[112]

Xing Y,Zhong X.An encoder-decoder network based FCN architecture for semantic segmentation.Wirel Commun Mob Comput2020;2020:1-9

[113]

Lin TY,Girshick R,Dollar P.Focal loss for dense object detection.IEEE Trans Pattern Anal Mach Intell2020;42:318-27

[114]

Badrinarayanan V,Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. arXiv 2015, arXiv:1511.00561. https://doi.org/10.48550/arXiv.1511.00561. (accessed 3 Jul 2025)

[115]

Badrinarayanan V,Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling. arXiv 2015, arXiv:1505.07293. https://doi.org/10.48550/arXiv.1505.07293. (accessed 3 Jul 2025)

[116]

Kendall A,Cipolla R. Bayesian SegNet: model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. arXiv 2015, arXiv:1511.02680. https://doi.org/10.48550/arXiv.1511.02680. (accessed 3 Jul 2025)

[117]

Ronneberger O,Brox T.U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical image computing and computer-assisted intervention - MICCAI 2015. Cham: Springer International Publishing; 2015. pp. 234-41.

[118]

Zhou Z,Tajbakhsh N.UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov D, Taylor Z, Carneiro G, et al, editors. Deep learning in medical image analysis and multimodal learning for clinical decision support. Cham: Springer International Publishing; 2018. pp. 3-11.

[119]

Bangaru SS,Zhou X.Scanning electron microscopy (SEM) image segmentation for microstructure analysis of concrete using U-net convolutional neural network.Autom Constr2022;144:104602

[120]

Pratt L,Klein R.Defect detection and quantification in electroluminescence images of solar PV modules using U-net semantic segmentation.Renew Energy2021;178:1211-22

[121]

Bertoldo JPC,Ryckelynck D.A modular U-Net for automated segmentation of X-ray tomography images in composite materials.Front Mater2021;8:761229

[122]

Shi P,Yang L,Ding L.An improved U-Net image segmentation method and its application for metallic grain size statistics.Materials2022;15:4417 PMCID:PMC9267311

[123]

Bhavani MD,Goel T.Robust U-Net: development of robust image enhancement model using modified U-Net architecture.Concurr Comput Pract Exp2022;34:e7347

[124]

Lian Z,Zhang Q,Erdun E.Enhancement of biomass material characterization images using an improved U-Net.Comput Mater Continua2022;72:1515-28

[125]

Zhu L,Li L,Zhu M.Metal artifact reduction for X-ray computed tomography using U-Net in image domain.IEEE Access2019;7:98743-54

[126]

Yang D,Liu Z,Cheng H.Radiographic image enhancement based on a triple constraint U-Net network.insight2022;64:511-9

[127]

Chen LC,Kokkinos I,Yuille AL. Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv 2014, arXiv:1412.7062. https://doi.org/10.48550/arXiv.1412.7062. (accessed 3 Jul 2025)

[128]

Liu C,Schroff F. Auto-DeepLab: hierarchical neural architecture search for semantic image segmentation. arXiv 2019, arXiv:1901.02985. https://doi.org/10.48550/arXiv.1901.02985. (accessed 3 Jul 2025)

[129]

Chen LC,Kokkinos I,Yuille AL.DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs.IEEE Trans Pattern Anal Mach Intell2018;40:834-48

[130]

Chen LC,Papandreou G,Adam H. Encoder-decoder with atrous separable convolution for semantic image segmentation. arXiv 2018, arXiv:1802.02611. https://doi.org/10.48550/arXiv.1802.02611. (accessed 3 Jul 2025)

[131]

Chen LC,Schroff F. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. https://doi.org/10.48550/arXiv.1706.05587. (accessed 3 Jul 2025)

[132]

Shrivastava A,Dayal K.Predicting peak stresses in microstructured materials using convolutional encoder–decoder learning.Math Mech Solids2022;27:1336-57

[133]

Konstantinova T,Rakitin M,Barbour AM.Noise reduction in X-ray photon correlation spectroscopy with convolutional neural networks encoder-decoder models.Sci Rep2021;11:14756 PMCID:PMC8292438

[134]

Tsopanidis S,Osovski S.Toward quantitative fractography using convolutional neural networks.Eng Fract Mech2020;231:106992

[135]

Goodfellow IJ,Mirza M. Generative adversarial networks. arXiv 2014, arXiv:1406.2661. https://doi.org/10.48550/arXiv.1406.2661. (accessed 3 Jul 2025)

[136]

Arjovsky M,Bottou L. Wasserstein GAN. arXiv 2017, arXiv:1701.07875. https://doi.org/10.48550/arXiv.1701.07875. (accessed 3 Jul 2025)

[137]

Mao X,Xie H,Wang Z. Least squares generative adversarial networks. arXiv 2016, arXiv:1611.04076. https://doi.org/10.48550/arXiv.1611.04076. (accessed 3 Jul 2025)

[138]

Berthelot D,Metz L. BEGAN: boundary equilibrium generative adversarial networks. arXiv 2017, arXiv:1703.10717. https://doi.org/10.48550/arXiv.1703.10717. (accessed 3 Jul 2025)

[139]

Mirza M. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784. https://doi.org/10.48550/arXiv.1411.1784. (accessed 3 Jul 2025)

[140]

Isola P,Zhou T. Image-to-image translation with conditional adversarial networks. arXiv 2016, arXiv:1611.07004. https://doi.org/10.48550/arXiv.1611.07004. (accessed 3 Jul 2025)

[141]

Zhu JY,Isola P. Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv 2017, arXiv:1703.10593. https://doi.org/10.48550/arXiv.1703.10593. (accessed 3 Jul 2025)

[142]

Yi Z,Tan P. DualGAN: unsupervised dual learning for image-to-image translation. arXiv 2017, arXiv:1704.02510. https://doi.org/10.48550/arXiv.1704.02510. (accessed 3 Jul 2025)

[143]

Chai C,Zou N.A one-to-many conditional generative adversarial network framework for multiple image-to-image translations.Multimed Tools Appl2018;77:22339-66

[144]

Huang H,Gong M.Experimental quantum generative adversarial networks for image generation.Phys Rev Appl2021;16:024051

[145]

Kench S.Generating three-dimensional structures from a two-dimensional slice with generative adversarial network-based dimensionality expansion.Nat Mach Intell2021;3:299-305

[146]

Mao Y,Zhao X.Designing complex architectured materials with generative adversarial networks.Sci Adv2020;6:eaaz4169 PMCID:PMC7182413

[147]

Dan Y,Li X,Hu M.Generative adversarial networks (GAN) based efficient sampling of chemical composition space for inverse design of inorganic materials.npj Comput Mater2020;6:352

[148]

Narikawa R,Wang Z.Generative adversarial networks-based synthetic microstructures for data-driven materials design.Adv Theory Simul2022;5:2100470

[149]

Aryan P,Sohn H.An overview of non-destructive testing methods for integrated circuit packaging inspection.Sensors2018;18:1981 PMCID:PMC6068802

[150]

Pal MK,Gácsi Z.Growth kinetics and IMCs layer analysis of SAC305 solder with the reinforcement of SiC during the isothermal aging condition.J Mater Res Technol2023;24:8320-31

[151]

Chen Y,Long J.Interfacial laser-induced graphene enabling high-performance liquid-solid triboelectric nanogenerator.Adv Mater2021;33:e2104290

[152]

Zhu Y.Geometric size effect on IMC growth and elements diffusion in Cu/Sn/Cu solder joints.SSMT2017;29:85-91

[153]

Magnien J,Lederer M.Investigation of interfacial behavior in miniaturized solder interconnects.Mater Sci Eng A2016;673:541-50

[154]

Huang P,Jhan J,Chen C.Strong grain size effect on the liquid/solid reactions between molten solder and electroplated Cu.Mater Today Commun2024;41:110236

[155]

Cao H,Zhang Y,Su D.Effect of the anisotropic characteristics of β-Sn on current-induced solder evolution.Mater Design2022;224:111339

[156]

Pham AM,Sadasiva S,Koslowski M.Effect of Sn orientation on electromigration failure in CuSn solders.J Electron Mater2024;53:6424-31

[157]

Li C,Ma Z.Effect of βSn grain orientations on the electromigration-induced evolution of voids in SAC305 BGA solder joints.Mater Charact2024;215:114227

[158]

Ling Q.Printed circuit board defect detection methods based on image processing, machine learning and deep learning: a survey.IEEE Access2023;11:15921-44

[159]

Arena P,Bucolo M.Image processing for medical diagnosis using CNN.Nucl Instrum Methods Phys Res Sect A2003;497:174-8

[160]

Matsumoto T,Suzuki H.Several image processing examples by CNN. In IEEE International Workshop on Cellular Neural Networks and their Applications, Budapest, Hungary. Dec 16-19, 1990. IEEE; 1990. pp. 100-11.

[161]

Zeng L,Zhu D.Underwater target detection based on Faster R-CNN and adversarial occlusion network.Eng Appl Artif Intell2021;100:104190

[162]

Jia W,Luo R,Lian J.Detection and segmentation of overlapped fruits based on optimized mask R-CNN application in apple harvesting robot.Comput Electron Agric2020;172:105380

[163]

Ren S,Girshick R.Faster R-CNN: towards real-time object detection with region proposal networks.IEEE Trans Pattern Anal Mach Intell2017;39:1137-49

[164]

Cheng JC.Automated detection of sewer pipe defects in closed-circuit television images using deep learning techniques.Autom Constr2018;95:155-71

[165]

Xu X,Yang F.Railway subgrade defect automatic recognition method based on improved Faster R-CNN.Sci Program2018;2018:1-12

[166]

Chen M,Zhi C.Improved faster R-CNN for fabric defect detection based on Gabor filter with Genetic Algorithm optimization.Comput Ind2022;134:103551

[167]

Wang Y,Zheng P,Zou J.A smart surface inspection system using faster R-CNN in cloud-edge computing environment.Adv Eng Inform2020;43:101037

[168]

Li YT.A VGG-16 based Faster RCNN model for PCB error inspection in industrial AOI applications. In 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), Taichung, Taiwan. May 19-21, 2018. IEEE; 2018. p. 1-2.

[169]

Ma C,Zhu J,Liu W.Chip surface defect recognition based on improved Faster R-CNN. In 2022 28th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Nanjing, China. Nov 16-18, 2022. IEEE; 2022. p. 1-6.

[170]

Hu B.Detection of PCB surface defects with improved Faster-RCNN and feature pyramid network.IEEE Access2020;8:108335-45

[171]

Wang J,Yang S,Lin D. Region proposal by guided anchoring. arXiv 2019, arXiv:1901.03278. https://doi.org/10.48550/arXiv.1901.03278. (accessed 3 Jul 2025)

[172]

Shen X,Lu J.Detection of surface defect on flexible printed circuit via guided box improvement in GA-Faster-RCNN network.PLoS One2023;18:e0295400 PMCID:PMC10697535

[173]

Lin TY,Girshick R,Hariharan B. Feature pyramid networks for object detection. arXiv 2016, arXiv:1612.03144. https://doi.org/10.48550/arXiv.1612.03144. (accessed 3 Jul 2025)

[174]

Redmon J,Girshick R. You Only Look Once: unified, real-time object detection. arXiv 2015, arXiv:1506.02640. https://doi.org/10.48550/arXiv.1506.02640. (accessed 3 Jul 2025)

[175]

Sapkota R,Qureshi R. YOLO advances to its genesis: a decadal and comprehensive review of the You Only Look Once (YOLO) series. arXiv 2024, arXiv:2406.19407. https://doi.org/10.48550/arXiv.2406.19407. (accessed 3 Jul 2025)

[176]

Wang A,Liu L. YOLOv10: real-time end-to-end object detection. arXiv 2024, arXiv:2405.14458. https://doi.org/10.48550/arXiv.2405.14458. (accessed 3 Jul 2025)

[177]

Wang C,Mark Liao H.YOLOv9: learning what you want to learn using programmable gradient information. In: Leonardis A, Ricci E, Roth S, Russakovsky O, Sattler T, Varol G, editors. Computer Vision - ECCV 2024. Cham: Springer Nature Switzerland; 2025. pp. 1-21.

[178]

Redmon J. YOLO9000: better, faster, stronger. arXiv 2016, arXiv:1612.08242. https://doi.org/10.48550/arXiv.1612.08242. (accessed 3 Jul 2025)

[179]

Redmon J. YOLOv3: an incremental improvement. arXiv 2018, arXiv:1804.02767. https://doi.org/10.48550/arXiv.1804.02767. (accessed 3 Jul 2025)

[180]

Bochkovskiy A,Liao HYM. YOLOv4: optimal speed and accuracy of object detection. arXiv 2004, arXiv:2004.10934. https://doi.org/10.48550/arXiv.2004.10934. (accessed 3 Jul 2025)

[181]

Li C,Jiang H. YOLOv6: a single-stage object detection framework for industrial applications. arXiv 2022, arXiv:2209.02976. https://doi.org/10.48550/arXiv.2209.02976. (accessed 3 Jul 2025)

[182]

Wang CY,Liao HYM. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022, arXiv:2207.02696. https://doi.org/10.48550/arXiv.2207.02696. (accessed 3 Jul 2025)

[183]

Mostafa T,Rhaman MK.Occluded object detection for autonomous vehicles employing YOLOv5, YOLOX and Faster R-CNN. In 2022 IEEE 13th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, Canada. Oct 12-15, 2022. IEEE; 2022. pp. 0405-10.

[184]

Ye C,Wang Y.Steering angle prediction YOLOv5-based end-to-end adaptive neural network control for autonomous vehicles.Proc Inst Mech Eng D J Automob Eng2022;236:1991-2011

[185]

Jia X,Qiao H,Tong J.Fast and accurate object detector for autonomous driving based on improved YOLOv5.Sci Rep2023;13:9711 PMCID:PMC10272162

[186]

Chen Z,Zhang W,Li D.Autonomous parking space detection for electric vehicles based on improved YOLOV5-OBB algorithm.WEVJ2023;14:276

[187]

Patel P,Shah J.Detection of traffic sign based on YOLOv8.AIP Conf Proc2024;3107:050015

[188]

Mao W,Chou P.Automated defect detection for mass-produced electronic components based on YOLO object detection models.IEEE Sensors J2024;24:26877-88

[189]

Hinz, T, Fisher M, Wang O, Wermter S. Improved techniques for training single-image GANs. arXiv 2020, arXiv:2003.11512. https://doi.org/10.48550/arXiv.2003.11512. (accessed 3 Jul 2025)

[190]

Cao Y,Zhou Y,Huang Z.An auto chip package surface defect detection based on deep learning.IEEE Trans Instrum Meas2024;73:1-15

[191]

Lin YL,Hsu HC.Capacitor detection in PCB using YOLO algorithm. In 2018 International Conference on System Science and Engineering (ICSSE), New Taipei, Taiwan. Jun 28-30, 2018. IEEE; 2018. p. 1-4.

[192]

Zuo Y,Song J.Application of YOLO object detection network in weld surface defect detection. In 2021 IEEE 11th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Jiaxing, China. Jul 27-31, 2021. IEEE; 2021. pp. 704-10.

[193]

Liao S,Liang Y,Liu S.Solder joint defect inspection method based on ConvNeXt-YOLOX.IEEE Trans Compon Packag Manufact Technol2022;12:1890-8

[194]

Bhatasana M.Machine-learning assisted optimization strategies for phase change materials embedded within electronic packages.Appl Therm Eng2021;199:117384

[195]

Jain D,Khullar P,Rai B.Bulk and surface DFT investigations of inorganic halide perovskites screened using machine learning and materials property databases.Phys Chem Chem Phys2019;21:19423-36

[196]

Yang J.High-throughput computations and machine learning for halide perovskite discovery.MRS Bull2022;47:940-8

[197]

Mannodi-Kanakkithodi A.A guide to discovering next-generation semiconductor materials using atomistic simulations and machine learning.Comput Mater Sci2024;243:113108

[198]

Tsymbalov E,Dao M,Li J.Machine learning for deep elastic strain engineering of semiconductor electronic band structure and effective mass.npj Comput Mater2021;7:538

[199]

Na GS,Lee YL.Tuplewise material representation based machine learning for accurate band gap prediction.J Phys Chem A2020;124:10616-23

[200]

Jain A,Hautier G.Commentary: The Materials Project: A materials genome approach to accelerating materials innovation.APL Mater2013;1:011002

[201]

Wan Z,Liu D.Effectively improving the accuracy of PBE functional in calculating the solid band gap via machine learning.Comput Mater Sci2021;198:110699

[202]

Huang Y,Chen W.Band gap and band alignment prediction of nitride-based semiconductors using machine learning.J Mater Chem C2019;7:3238-45

[203]

Siriwardane EMD,Perera I.Generative design of stable semiconductor materials using deep learning and density functional theory.npj Comput Mater2022;8:850

[204]

Haghshenas Y,Sethu V,Kumar PV.Full prediction of band potentials in semiconductor materials.Mater Today Phys2024;46:101519

[205]

Pruksawan S,Samitsu S,Naito M.Prediction and optimization of epoxy adhesive strength from a small dataset through active learning.Sci Technol Adv Mater2019;20:1010-21 PMCID:PMC6818118

[206]

Jin K,Wang Z,Tao J.Composition optimization of a high-performance epoxy resin based on molecular dynamics and machine learning.Mater Design2020;194:108932

[207]

Liu Z.First-principles calculations and CALPHAD modeling of thermodynamics.J Phase Equilib Diffus2009;30:517-34

[208]

Zhang H,Cao Y,Bao M.A first-principles study of the mechanical and physical properties of Ni3Snx intermetallic compounds for high-temperature power device packaging.Intermetallics2024;164:108112

[209]

Fu R,Pan K,Zhang J.First-principles study on IMC formation and interface failure of electronic packaging solder joints.J Phys Conf Ser2023;2483:012021

[210]

Boldon L,Liu L.Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application.Nano Rev2015;6:25661 PMCID:PMC4342503

[211]

Gao Z,Wang S,Zhang Y.Effects of interface structure on the mechanical properties and deformation mechanisms of Copper–Tantalum interface via molecular dynamic simulation.IEEE Trans Compon Packag Manufact Technol2024;14:61-70

[212]

Ji C,Zhou Z,Liu S.Effects of intermetallic compound layer thickness on the mechanical properties of silicon-copper interface.Mater Design2021;212:110251

[213]

Zhang J,Tang H,Zhang G.Molecular dynamics assisted corrosion-resistant evaluation of encapsulation materials on copper used in power electronics packaging. In 2024 25th International Conference on Electronic Packaging Technology (ICEPT), Tianjin, China. Aug 07-09, 2024. IEEE; 2024. p. 1-5.

[214]

Ahsan M,Batunlu C.Reliability assessment of IGBT through modelling and experimental testing.IEEE Access2020;8:39561-73

[215]

Wang C,Wang C,Li L.A fusion algorithm for online reliability evaluation of microgrid inverter IGBT.Electronics2020;9:1294

[216]

Rao Z,Zha X.IGBT remaining useful life prediction based on particle filter with fusing precursor.IEEE Access2020;8:154281-9

[217]

Quan R,Hu Y.A novel IGBT health evaluation method based on multi-label classification.IEEE Access2019;7:47294-302

[218]

Wu J,Du X.Junction temperature prediction of IGBT power module based on BP neural network.J Electr Eng Technol2014;9:970-7

[219]

Dou Y.An improved prediction model of IGBT junction temperature based on backpropagation neural network and kalman filter.Complexity2021;2021:5542889

[220]

Wang S,Takyi-Aninakwa P,Fernandez C.Improved multiple feature-electrochemical thermal coupling modeling of lithium-ion batteries at low-temperature with real-time coefficient correction.Prot Control Mod Power Syst2024;9:157-73

[221]

Li Y,Liu D,Fernandez C.Improved multi-head Bi-directional long and short-term memory temporal convolutional network for lithium-ion batteries state of charge estimation in energy storage systems. In 2024 IEEE 25th China Conference on System Simulation Technology and Its Application (CCSSTA), Tianjin, China. Jul 21-23, 2024. IEEE; 2024. pp. 581-6.

[222]

Xu X,Wang C,Blaabjerg F.A novel back propagation neural network-square root Cubature Kalman filtering strategy based on fusion dual factor parameter identification for state-of-charge estimation of lithium-ion batteries. In 2024 IEEE 4th New Energy and Energy Storage System Control Summit Forum (NEESSC), Hotthot, China. Aug 29-31, 2024. IEEE; 2024. pp. 120-6.

[223]

Gharaibeh AR,Soud Q,Manaserh Y.Thermal challenges in heterogeneous packaging: experimental and machine learning approaches to liquid cooling.Appl Therm Eng2025;260:125081

[224]

Djedidi O,Benmoussa S.Remaining useful life prediction in embedded systems using an online auto-updated machine learning based modeling.Microelectro Reliab2021;119:114071

[225]

Huang G,Siew C.Extreme learning machine: theory and applications.Neurocomputing2006;70:489-501

[226]

Liu B,Lin H,Liu J.Prediction of IGBT junction temperature using improved cuckoo search-based extreme learning machine.Microelectron Reliab2021;124:114267

[227]

Majd M,Prisacaru A,Wunderle B.Stress prognostics for encapsulated standard packages by neural networks using data from in-situ condition monitoring during thermal shock tests. In 2020 21st International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Cracow, Poland. Jul 05-08, 2020. IEEE; 2020. pp. 1-10.

[228]

Chang YW,Helfen L.Electromigration mechanism of failure in flip-chip solder joints based on discrete void formation.Sci Rep2017;7:17950 PMCID:PMC5738397

[229]

R E,Samavatian V,Kokabi A.Reliability enhancement of a power semiconductor with optimized solder layer thickness.IEEE Trans Power Electron2020;35:6397-404

[230]

Sayyadi R.The role of intermetallic compounds in controlling the microstructural, physical and mechanical properties of Cu-[Sn-Ag-Cu-Bi]-Cu solder joints.Sci Rep2019;9:8389 PMCID:PMC6557902

[231]

Belhadi MEA,Vyas P. Effects of matching lead-free solder joints compared to SnPb on BGA reliability in thermal cycling. In SMTA International Conference Proceedings, Minneapolis, USA. 2021. https://www.researchgate.net/publication/364720767_Effects_of_Matching_Lead-free_Solder_Joints_Compared_to_SnPb_on_BGA_Reliability_in_Thermal_Cycling. (accessed 3 Jul 2025)

[232]

Belhadi MEA,Alahmer A,Alakayleh A.Investigating the evolution of creep properties during thermal cycling of homogeneous lead-free solder joints.IEEE Trans Compon Packag Manufact Technol2023;13:1951-65

[233]

Li L,Li Z.Cox-proportional hazards modeling in reliability analysis - a study of electromagnetic relays data.IEEE Trans Compon Packag Manufact Technol2015;5:1582-9

[234]

Tang Z,Jiang W.Analysis of significant factors on cable failure using the cox proportional hazard model.IEEE Trans Power Deliv2014;29:951-7

[235]

You M,Meng G.Proportional hazards model for reliability analysis of solder joints under various drop-impact and vibration conditions.Proc Inst Mech Eng O J Risk Reliab2012;226:194-202

[236]

Ogbomo OO,Ekere N.Effect of operating temperature on degradation of solder joints in crystalline silicon photovoltaic modules for improved reliability in hot climates.Sol Energy2018;170:682-93

[237]

Han Y,Jing H,Zhao L.A modified constitutive model of Ag nanoparticle-modified graphene/Sn–Ag–Cu/Cu solder joints.Mater Sci Eng A2020;777:139080

[238]

Park B,Lee C.Mechanical, electrical, and thermal reliability of Sn-58wt.%Bi solder joints with Ag-decorated MWCNT for LED package component during aging treatment.Compos Part B Eng2020;182:107617

[239]

Hah J,Fernandez-zelaia P.Comprehensive comparative analysis of microstructure of Sn–Ag–Cu (SAC) solder joints by traditional reflow and thermo-compression bonding (TCB) processes.Materialia2019;6:100327

[240]

Samavatian V,Samavatian M,Blaabjerg F.Correlation-driven machine learning for accelerated reliability assessment of solder joints in electronics.Sci Rep2020;10:14821 PMCID:PMC7481227

[241]

Hsu PN,Chen KP.Artificial intelligence deep learning for 3D IC reliability prediction.Sci Rep2022;12:6711 PMCID:PMC9035975

[242]

Yuan CCA.Solder joint reliability modeling by sequential artificial neural network for glass wafer level chip scale package.IEEE Access2020;8:143494-501

[243]

Reihanisaransari R,Salameh AA,Amiri N.Reliability characterization of solder joints in electronic systems through a neural network aided approach.IEEE Access2022;10:123757-68

[244]

Chen Z,Wang S.Challenges and prospects for advanced packaging.Fundam Res2024;4:1455-8 PMCID:PMC11670716

[245]

Chaware R,Lin J.Assembly challenges in developing 3D IC package with ultra high yield and high reliability. In 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), San Diego, USA. May 26-19, 2015. IEEE; 2015. pp. 1447-51.

[246]

Takekoshi M,Okada Y,Nonaka T.Warpage suppression during FO-WLP fabrication process. In 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, USA. May 30 - Jun 02, 2017. IEEE; 2017. pp. 902-8.

[247]

Lee C,Cheng R,Chang T.Reliability enhancements of chip-on-chip package with layout designs of microbumps.Microelectro Eng2014;120:138-45

[248]

Alpern P,Tilgner R.A simple test chip to assess chip and package design in the case of plastic assembling.IEEE Trans Comp Packag Manufact Technol A1994;17:583-9

[249]

Huang P,Wang S.Study on packaging structure of high power multi-chip LED. In 2012 13th International Conference on Electronic Packaging Technology & High Density Packaging, Guilin, China. Aug 13-16, 2012. IEEE; 2012. pp. 1516-20.

[250]

Lau JH.Recent advances and new trends in flip chip technology.J Electron Packag2016;138:030802

[251]

Pascariu G,Crowley D.Next generation electronics packaging utilizing flip chip technology. In IEEE/CPMT/SEMI 28th International Electronics Manufacturing Technology Symposium, San Jose, USA. Jul 16-18, 2003. IEEE; 2003. pp. 423-6.

[252]

Heinrich W.The flip-chip approach for millimeter wave packaging.IEEE Microw Mag2005;6:36-45

[253]

Hong J,Chen J.High-efficiency revolving-turret chip transferring technology for flip chip packaging.IEEE Trans Compon Packag Manufact Technol2018;8:154-64

[254]

Wu H.Machine learning assisted structural design optimization for flip chip packages. In 2021 6th International Conference on Integrated Circuits and Microsystems (ICICM), Nanjing, China. Oct 22-24, 2021. IEEE; 2021. pp. 132-6.

[255]

Chu W,Li W.An adaptive machine learning method based on finite element analysis for ultra low-k chip package design.IEEE Trans Compon Packag Manufact Technol2021;11:1435-41

[256]

Garud SS,Kraft M.Design of computer experiments: a review.Comput Chem Eng2017;106:71-95

[257]

Lai JP,Lin HC,Wang YP.RLC circuit forecast in analog IC packaging and testing by machine learning techniques.Micromachines2022;13:1305 PMCID:PMC9413446

[258]

Shih M,Lin G.Next-generation high-density PCB development by fan-out RDL technology.IEEE Trans Device Mater Relib2022;22:296-305

[259]

Long X,Su Y.Rapid model generation and analysis of mechanical behaviour of electronic packaging structures by machine learning. In 2022 23rd International Conference on Electronic Packaging Technology (ICEPT), Dalian, China. Aug 10-13, 2022. IEEE; 2022. p. 1-4.

[260]

Chae H,Mutnury B.ISOP+: machine learning-assisted inverse stack-up optimization for advanced package design.IEEE Trans Comput Aided Des Integr Circuits Syst2024;43:2-15

[261]

Gu A.3D measurement workflow for packaging development and production control using high-resolution 3D X-ray microscope. In 2018 IEEE 20th Electronics Packaging Technology Conference (EPTC), Singapore. Dec 04-07, 2018. IEEE; 2018. pp. 206-10.

[262]

Gu A,Stegmann H,Fu C.From system to package to interconnect: an artificial intelligence powered 3D X-ray imaging solution for semiconductor package structural analysis and correlative microscopic failure analysis. In 2022 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Singapore. Jul 18-21, 2022. IEEE; 2022. p. 1-5.

[263]

Gu A,Terada M,Viswanathan V.A deep learning reconstruction technique and workflow to enhance 3D X-ray imaging resolution and speed for electronics package failure analysis. In 2023 International Conference on Electronics Packaging (ICEP), Kumamoto, Japan. Apr 19-22, 2023. IEEE; 2023. pp. 69-70.

[264]

Villarraga-Gómez H,Terada M.Assessing electronics with advanced 3D X-ray imaging techniques, nanoscale tomography, and deep learning.J Fail Anal Prev2024;24:2113-28

[265]

Villarraga-Gómez H,Andrew M. Improving scan time and image quality in 3D X-ray microscopy by deep learning reconstruction techniques. In 36th ASPE Annual Meeting, Minneapolis, USA. 2021. pp. 361-6. https://www.researchgate.net/publication/355796890_Improving_scan_time_and_image_quality_in_3D_X-ray_microscopy_by_deep_learning_reconstruction_techniques. (accessed 3 Jul 2025)

[266]

Gu A,Terada M,Mohammad-Zulkifli S.Accelerate your 3D X-ray failure analysis by deep learning high resolution reconstruction. In ISTFA Proceedings, Phoenix, USA. Oct 31 - Nov 4, 2021.

[267]

Zhang Y,Ritschel T.ONIX: an X-ray deep-learning tool for 3D reconstructions from sparse views.Appl Res2023;2:e202300016

AI Summary AI Mindmap
PDF

613

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/