Neuroevolution potential for thermal transport in silicon carbide

Haoming Zhang , Mo Cheng , Xuanyu Jiang , Hui Zhang , Xiaodong Pi , Deren Yang , Tianqi Deng

Journal of Materials Informatics ›› 2025, Vol. 5 ›› Issue (3) : 34

PDF
Journal of Materials Informatics ›› 2025, Vol. 5 ›› Issue (3) :34 DOI: 10.20517/jmi.2025.06
Research Article

Neuroevolution potential for thermal transport in silicon carbide

Author information +
History +
PDF

Abstract

Silicon carbide (SiC) is a representative high-thermal-conductivity semiconductor for applications in power electronics and quantum devices. In these applications, thermal management becomes critical for stable functioning. Meanwhile, SiC crystallizes into hundreds of polytypes with various stacking orders and small energy difference. Such a characteristic also leads to the formation of stacking faults. To understand the thermal transport property of SiC in the presence of polytypism and crystallographic defects, we have developed a neuroevolution potential for SiC. The model is trained on a diverse dataset with stoichiometric and off-stoichiometric SixCy configurations. The dataset is strategically sampled using graph network encoding and clustering in the feature space. The potential achieves high accuracy with energy error of 4.1 meV/atom and force error of 0.22 eV/Å in the test set. And the dataset diversity is found to be critical to the model robustness. The application of this model is demonstrated by simulating the thermal transport property of SiC polytypes and stacking faults using homogeneous nonequilibrium molecular dynamics. The thermal resistance of stacking faults can reach substantial values up to 10-10 K·m2·W-1, which may create hot spots and impede heat dissipation in devices. The thermal resistance varies considerably among different fault types, with those exhibiting consecutive cubic k stacking configurations demonstrating remarkably lower resistance. This work provides an accurate and efficient machine-learning interatomic potential for simulations of thermal and phonon properties of SiC and understanding of its thermal management in the presence of polytypism and crystallographic defects.

Keywords

Silicon carbide / machine learning interatomic potential / thermal transport / stacking fault

Cite this article

Download citation ▾
Haoming Zhang, Mo Cheng, Xuanyu Jiang, Hui Zhang, Xiaodong Pi, Deren Yang, Tianqi Deng. Neuroevolution potential for thermal transport in silicon carbide. Journal of Materials Informatics, 2025, 5(3): 34 DOI:10.20517/jmi.2025.06

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Morkoç H,Gao GB,Sverdlov B.Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies.J Appl Phys1994;76:1363-98

[2]

Kimoto T.Fundamentals of silicon carbide technology: growth, characterization, devices and applications. John Wiley & Sons, 2014.

[3]

Wellmann P,Rupp R.Wide bandgap semiconductors for power electronics: materials, devices, applications. Wiley Online Library, 2021.

[4]

Koehl WF,Heremans FJ,Awschalom DD.Room temperature coherent control of defect spin qubits in silicon carbide.Nature2011;479:84-7

[5]

Castelletto S,Ivády V.A silicon carbide room-temperature single-photon source.Nat Mater2014;13:151-6

[6]

Schöner A,Pensl G,Nagasawa H.Fabrication and characterization of 3C-SiC-based MOSFETs.Chem Vap Depos2006;12:523-30

[7]

Aldalbahi A,Rivera M.A new approach for fabrications of SiC based photodetectors.Sci Rep2016;6:23457 PMCID:PMC4796815

[8]

Protik NH,Lindsay L,Mingo N.Phonon thermal transport in 2H, 4H and 6H silicon carbide from first principles.Mater Today Phys2017;1:31-8

[9]

Kawamura T,Kangawa Y,Yoshimura M.Thermal conductivity of SiC calculated by molecular dynamics.Jpn J Appl Phys2008;47:8898

[10]

Zywietz A,Bechstedt F.Influence of polytypism on thermal properties of silicon carbide.Phys Rev B Condens Matter1996;54:1791-8

[11]

Qian X,Yang R.Anisotropic thermal conductivity of 4H and 6H silicon carbide measured using time-domain thermoreflectance.Mater Today Phys2017;3:70-5

[12]

Burgemeister EA,Pettenpaul E.Thermal conductivity and electrical properties of 6H silicon carbide.J Appl Phys1979;50:5790-4

[13]

Cheng Z,Kawamura K.High thermal conductivity in wafer-scale cubic silicon carbide crystals.Nat Commun2022;13:7201 PMCID:PMC9684120

[14]

Wei R,Yang K.Thermal conductivity of 4H-SiC single crystals.J Appl Phys2013;113:053503

[15]

Zheng Q,Rai A,Broido DA.Thermal conductivity of GaN, 71GaN, and SiC from 150 K to 850 K.Phys Rev Mater2019;3:014601

[16]

Slack GA.Thermal conductivity of pure and impure silicon, silicon carbide, and diamond.J Appl Phys1964;35:3460-6

[17]

Morelli DT,Beetz CP,Matsunami H.Phonon-electron scattering in single crystal silicon carbide.Appl Phys Lett1993;63:3143-5

[18]

Nilsson O,Horn R.Determination of the thermal diffusivity and conductivity of monocrystalline silicon carbide (300-2300 K).High Temp High Press1997;29:73-9

[19]

Boteler L,Berman M.Thermal conductivity of power semiconductors - when does it matter? In 2019 IEEE 7th Workshop on Wide Bandgap Power Devices and Applications (WIPDA), Raleigh, USA. Oct 29-31, 2019. IEEE; 2019. pp. 270-6.

[20]

Goela JS,Pickering MA.Chemical-vapor-deposited materials for high thermal conductivity applications.MRS Bull2001;26:458-63

[21]

Hoang TM,Masuyama Y.Thermometric quantum sensor using excited state of silicon vacancy centers in 4H-SiC devices.Appl Phys Lett2021;118:044001

[22]

Yang G,Li J.Discrimination of dislocations in 4H-SiC by inclination angles of molten-alkali etched pits.J Semicond2022;43:122801

[23]

Kawahara C,Kimoto T.Identification of dislocations in 4H-SiC epitaxial layers and substrates using photoluminescence imaging.Jpn J Appl Phys2014;53:020304

[24]

Yang G,Cui C,Yang D.Anisotropic etching mechanisms of 4H-SiC: experimental and first-principles insights.J Semicond2024;45:012502

[25]

Wang P,Li Y.Stacking faults in 4H-SiC epilayers and IGBTs.Mater Sci Semicond Process2024;177:108369

[26]

Harris S. An introduction to the theory of the Boltzmann equation. Courier Corporation, 2004. https://books.google.com/books?id=KfYK1lyq3VYC&printsec=frontcover#v=onepage&q&f=false. (accessed 14 May 2025)

[27]

Tadano T,Tsuneyuki S.Anharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulations.J Phys Condens Matter2014;26:225402

[28]

Li W,A .Katcho N, Mingo N. ShengBTE: a solver of the Boltzmann transport equation for phonons.Comput Phys Commun2014;185:1747-58

[29]

Madsen GK,Verstraete MJ.BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients.Comput Phys Commun2018;231:140-5

[30]

Carrete J,Katre A.almaBTE: a solver of the space–time dependent Boltzmann transport equation for phonons in structured materials.Comput Phys Commun2017;220:351-62

[31]

Zhou J,Lu I,Tong X.PERTURBO: a software package for ab initio electron–phonon interactions, charge transport and ultrafast dynamics.Comput Phys Commun2021;264:107970

[32]

Cepellotti A,Johansson A,Kozinsky B.Phoebe: a high-performance framework for solving phonon and electron Boltzmann transport equations.J Phys Mater2022;5:035003

[33]

Bi K,Yang J,Chen M.Molecular dynamics simulation of thermal conductivity of single-wall carbon nanotubes.Phys Lett A2006;350:150-3

[34]

Kannam SK,Hansen JS.Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations.J Chem Phys2012;136:024705

[35]

Yu J.A molecular dynamics investigation on evaporation of thin liquid films.Int J Heat Mass Transf2012;55:1218-25

[36]

Thompson AP,Berger R.LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales.Comput Phys Commun2022;271:108171

[37]

Haile JM. Molecular dynamics simulation: elementary methods. John Wiley & Sons, Inc., 1992. https://dl.acm.org/doi/10.5555/531139. (accessed 14 May 2025)

[38]

Kubo R.Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems.J Phys Soc Jpn1957;12:570-86

[39]

Müller-Plathe F.A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity.J Chem Phys1997;106:6082-5

[40]

Ikeshoji T.Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface.Mol Phys1994;81:251-61

[41]

Jund P.Molecular-dynamics calculation of the thermal conductivity of vitreous silica.Phys Rev B1999;59:13707-11

[42]

Sarman SS,Cummings PT.Recent developments in non-Newtonian molecular dynamics.Phys Rep1998;305:1-92

[43]

Cummings PT.Nonequilibrium molecular dynamics approaches to transport properties and non-Newtonian fluid rheology.Ind Eng Chem Res1992;31:1237-52

[44]

Salaway RN.Molecular dynamics simulations of thermal conductivity of carbon nanotubes: resolving the effects of computational parameters.Int J Heat Mass Transf2014;70:954-64

[45]

Fan Z,Harju A.Homogeneous nonequilibrium molecular dynamics method for heat transport and spectral decomposition with many-body potentials.Phys Rev B2019;99:064308

[46]

Ying P,Xu K.Sub-micrometer phonon mean free paths in metal-organic frameworks revealed by machine learning molecular dynamics simulations.ACS Appl Mater Interfaces2023;15:36412-22

[47]

Wang Y,Qian P,Ala-Nissila T.Quantum-corrected thickness-dependent thermal conductivity in amorphous silicon predicted by machine learning molecular dynamics simulations.Phys Rev B2023;107:054303

[48]

Xu K,Liang T.Accurate prediction of heat conductivity of water by a neuroevolution potential.J Chem Phys2023;158:204114

[49]

de Araujo Oliveira, H.; Fan, Z.; Harju, A.; Pereira, L. F. C. Tuning the thermal conductivity of silicon phononic crystals via defect motifs: implications for thermoelectric devices and photovoltaics.ACS Appl Nano Mater2025;8:4364-72

[50]

Mortazavi B.Recent advances in machine learning-assisted multiscale design of energy materials.Adv Energy Mater2025;15:2403876

[51]

Shimamura K,Fukushima S,Shimojo F.Computational and training requirements for interatomic potential based on artificial neural network for estimating low thermal conductivity of silver chalcogenides.J Chem Phys2020;153:234301

[52]

Qian X,Li X,Yang R.Thermal conductivity modeling using machine learning potentials: application to crystalline and amorphous silicon.Mater Today Phys2019;10:100140

[53]

Zeng Z,Xia Y,Wolverton C.Nonperturbative phonon scatterings and the two-channel thermal transport in Tl3VSe4.Phys Rev B2021;103:224307

[54]

Korotaev P,Yanilkin A.Accessing thermal conductivity of complex compounds by machine learning interatomic potentials.Phys Rev B2019;100:144308

[55]

Ouyang Y,He J,Ren W.Accurate description of high-order phonon anharmonicity and lattice thermal conductivity from molecular dynamics simulations with machine learning potential.Phys Rev B2022;105:115202

[56]

Li R,Luo T.A unified deep neural network potential capable of predicting thermal conductivity of silicon in different phases.Mater Today Phys2020;12:100181

[57]

Zhao CY,He Y.Microstructure and thermophysical property prediction for chloride composite phase change materials: a deep potential molecular dynamics study.J Phys Chem C2023;127:6852-60

[58]

Sun Z,Liang K.A neuroevolution potential for predicting the thermal conductivity of α, β, and ε-Ga2O3.Appl Phys Lett2023;123:192202

[59]

Zhang P,Liu Y,Lu Z.Phonon thermal transport in Bi2Te3 from a deep-neural-network interatomic potential.Phys Rev Appl2022;18:054022

[60]

Ouyang N,Chen Y.Temperature- and pressure-dependent phonon transport properties of SnS across phase transition from machine-learning interatomic potential.Int J Heat Mass Transf2022;192:122859

[61]

Wieser S.Machine learned force-fields for an Ab-initio quality description of metal-organic frameworks.npj Comput Mater2024;10:1205

[62]

Zhang P,Zhu Z.Tuning the lattice thermal conductivity of Sb2Te3 by Cr doping: a deep potential molecular dynamics study.Phys Chem Chem Phys2023;25:15422-32

[63]

Fu B,Jiang W.Determining the thermal conductivity and phonon behavior of SiC materials with quantum accuracy via deep learning interatomic potential model.J Nucl Mater2024;591:154897

[64]

Behler J.Generalized neural-network representation of high-dimensional potential-energy surfaces.Phys Rev Lett2007;98:146401

[65]

Bartók AP,Kondor R.Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons.Phys Rev Lett2010;104:136403

[66]

Caro MA.Optimizing many-body atomic descriptors for enhanced computational performance of machine learning based interatomic potentials.Phys Rev B2019;100:024112

[67]

Byggmästar J,Djurabekova F.Simple machine-learned interatomic potentials for complex alloys.Phys Rev Mater2022;6:083801

[68]

Thompson A,Trott C,Tucker G.Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials.J Comput Phys2015;285:316-30

[69]

Novikov IS,Podryabinkin EV.The MLIP package: moment tensor potentials with MPI and active learning.Mach Learn Sci Technol2021;2:025002

[70]

Wang H,Han J.DeePMD-kit: a deep learning package for many-body potential energy representation and molecular dynamics.Comput Phys Commun2018;228:178-84

[71]

Drautz R.Atomic cluster expansion for accurate and transferable interatomic potentials.Phys Rev B2019;99:014104

[72]

Fan Z,Zhang C.Neuroevolution machine learning potentials: combining high accuracy and low cost in atomistic simulations and application to heat transport.Phys Rev B2021;104:104309

[73]

Fan Z.Improving the accuracy of the neuroevolution machine learning potential for multi-component systems.J Phys Condens Matter2022;34:125902

[74]

Fan Z,Ying P.GPUMD: a package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations.J Chem Phys2022;157:114801

[75]

Evans DJ.Statistical mechanics of nonequilbrium liquids, 2nd ed.; ANU Press, 2007.

[76]

Cheng R,Klotz S.Lattice dynamics and thermal transport of PbTe under high pressure.Phys Rev B2023;108:104306

[77]

Zhang L,Wang H,E W.Active learning of uniformly accurate interatomic potentials for materials simulation.Phys Rev Mater2019;3:023804

[78]

Zhang Y,Chen W.DP-GEN: a concurrent learning platform for the generation of reliable deep learning based potential energy models.Comput Phys Commun2020;253:107206

[79]

Liu Y,Guo L.Deep learning inter-atomic potential for irradiation damage in 3C-SiC.Comput Mater Sci2024;233:112693

[80]

Lim J,Park J.Molecular dynamics study of silicon carbide using an ab initio-based neural network potential: effect of composition and temperature on crystallization behavior.J Phys Chem C2023;127:22692-703

[81]

Jain A,Hautier G.Commentary: The Materials Project: a materials genome approach to accelerating materials innovation.APL Mater2013;1:011002

[82]

Plimpton S.Fast parallel algorithms for short-range molecular dynamics.J Comput Phys1995;117:1-19

[83]

Tersoff J.Modeling solid-state chemistry: Interatomic potentials for multicomponent systems.Phys Rev B Condens Matter1989;39:5566-8

[84]

Chen C.A universal graph deep learning interatomic potential for the periodic table.Nat Comput Sci2022;2:718-28

[85]

Qi J,Wood BC,Ong SP.Robust training of machine learning interatomic potentials with dimensionality reduction and stratified sampling.npj Comput Mater2024;10:1227

[86]

Kresse G.Ab initio molecular dynamics for liquid metals.Phys Rev B Condens Matter1993;47:558-61

[87]

Kresse G.Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium.Phys Rev B Condens Matter1994;49:14251-69

[88]

Kresse G.Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set.Comput Mater Sci1996;6:15-50

[89]

Kresse G.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys Rev B Condens Matter1996;54:11169-86

[90]

Blöchl PE.Projector augmented-wave method.Phys Rev B Condens Matter1994;50:17953-79

[91]

Kresse G.From ultrasoft pseudopotentials to the projector augmented-wave method.Phys Rev B1999;59:1758-75

[92]

Shapeev AV.Moment tensor potentials: a class of systematically improvable interatomic potentials.Multiscale Model Simul2016;14:1153-73

[93]

Feldman DW,Choyke WJ.Phonon dispersion curves by Raman scattering in SiC, polytypes 3C, 4H, 6H, 15R, and 21R.Phys Rev1968;173:787-93

[94]

Zhang H,Zhang H,Yang D.Phonon folding and transport in SiC polytypes from first principles.Appl Phys Lett2025;126:142202

[95]

Zhou W,Wu X,Fan Z.Insight into the effect of force error on the thermal conductivity from machine-learned potentials.Mater Today Phys2025;50:101638

[96]

Wu X,Dong H.Correcting force error-induced underestimation of lattice thermal conductivity in machine learning molecular dynamics.J Chem Phys2024;161:014103

[97]

Petretto G,Miranda HPC.High-throughput density-functional perturbation theory phonons for inorganic materials.Sci Data2018;5:180065 PMCID:PMC5928854

[98]

Zhou H,Hua Z,Feng T.Extreme sensitivity of higher-order interatomic force constants and thermal conductivity to the energy surface roughness of exchange-correlation functionals.Appl Phys Lett2023;123:192201

[99]

Karch K,Windl W,Strauch D.Ab initio calculation of structural and lattice-dynamical properties of silicon carbide.Phys Rev B Condens Matter1994;50:17054-63

[100]

Chen J,Zhou J.Interfacial thermal resistance: past, present, and future.Rev Mod Phys2022;94:025002

AI Summary AI Mindmap
PDF

88

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/