Design of high energy storage ferroelectric materials by phase-field simulations

Ke Xu , Letao Yang , Jing Wang , Houbing Huang

Journal of Materials Informatics ›› 2025, Vol. 5 ›› Issue (2) : 24

PDF
Journal of Materials Informatics ›› 2025, Vol. 5 ›› Issue (2) :24 DOI: 10.20517/jmi.2024.97
Review

Design of high energy storage ferroelectric materials by phase-field simulations

Author information +
History +
PDF

Abstract

The improvement in energy storage performance of ferroelectric (FE) materials requires both high electric breakdown strength and significant polarization change. The phase-field method can couple the multi-physics-field factors. It can realize the simulation of electric breakdown and polarization evolution. It is widely used to reveal the modification mechanism and guide experimental design. Starting with the models of electric breakdown and polarization evolution, this work reviews the latest theoretical progress on FE materials with high energy storage performance. Firstly, the enhancement mechanisms of electric breakdown strength are analyzed. Subsequently, the improvement strategies at domain scales are analyzed. Finally, this review summarizes and looks ahead to the development of theoretical models, such as machine learning models.

Keywords

Ferroelectric energy storage / phase-field simulations / electric breakdown / polarization evolution

Cite this article

Download citation ▾
Ke Xu, Letao Yang, Jing Wang, Houbing Huang. Design of high energy storage ferroelectric materials by phase-field simulations. Journal of Materials Informatics, 2025, 5(2): 24 DOI:10.20517/jmi.2024.97

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang L,Li F.Perovskite lead-free dielectrics for energy storage applications.Prog Mater Sci2019;102:72-108

[2]

Palneedi H,Hwang G,Ryu J.High-performance dielectric ceramic films for energy storage capacitors: progress and outlook.Adv Funct Mater2018;28:1803665

[3]

Sun Z,Tian Y.Progress, outlook, and challenges in lead-free energy-storage ferroelectrics.Adv Elect Mater2020;6:1900698

[4]

Luo S,Yu S.Significantly enhanced electrostatic energy storage performance of flexible polymer composites by introducing highly insulating-ferroelectric microhybrids as fillers.Adv Energy Mater2019;9:1803204

[5]

Hao Y,Bi K.Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films.Nano Energy2017;31:49-56

[6]

Zhang R,Long S.Linear and ferroelectric effects of BaTiO3 particle size on the energy storage performance of composite films with different polymer matrices.Ceram Int2021;47:22155-63

[7]

Li H,Fan B,Peng Z.Nanostructured ferroelectric-polymer composites for capacitive energy storage.Small Methods2018;2:1700399

[8]

Guo M,Shen Z,Nan C.High-energy-density ferroelectric polymer nanocomposites for capacitive energy storage: enhanced breakdown strength and improved discharge efficiency.Mater Today2019;29:49-67

[9]

Sun Y,Huang Q.Ultrahigh energy storage density in glassy ferroelectric thin films under low electric field.Adv Sci2022;9:e2203926 PMCID:PMC9631080

[10]

Peddigari M,Wang R.Giant energy density via mechanically tailored relaxor ferroelectric behavior of PZT thick film.Adv Mater2023;35:2302554

[11]

Zhu M,Yang K.Energy storage in ferroelectric polymer nanocomposites filled with core-shell structured polymer@BaTiO3 nanoparticles: understanding the role of polymer shells in the interfacial regions.ACS Appl Mater Interfaces2014;6:19644-54

[12]

Wu L,Li L.Enhanced energy density in core–shell ferroelectric ceramics: modeling and practical conclusions.J Am Ceram Soc2016;99:930-7

[13]

Yang F,Zhang C.Improved energy storage property of ferroelectric polymer-based sandwiched composites interlayered with graphene oxide @ SiO2 core–shell nanoplatelets.J Mater Sci2022;57:11824-38

[14]

Feng M,Zhang T.Recent advances in multilayer-structure dielectrics for energy storage application.Adv Sci2021;8:2102221

[15]

Wang G,Li Y.Electroceramics for high-energy density capacitors: current status and future perspectives.Chem Rev2021;121:6124-72 PMCID:PMC8277101

[16]

Sturge KM,Bussio AM.Dynamics of high-speed electrical tree growth in electron-irradiated polymethyl methacrylate.Science2024;385:300-4

[17]

Shu L,Zhang X.Partitioning polar-slush strategy in relaxors leads to large energy-storage capability.Science2024;385:204-9

[18]

Qian J,Ge G.Topological vortex domain engineering for high dielectric energy storage performance.Adv Energy Mater2024;14:2303409

[19]

Liu H,Qiu Y.An intriguing intermediate state as a bridge between antiferroelectric and ferroelectric perovskites.Mater Horiz2020;7:1912-8

[20]

Wu L,Zhu C,Li L.Significantly enhanced dielectric breakdown strength of ferroelectric energy-storage ceramics via grain size uniformity control: Phase-field simulation and experimental realization.Appl Phys Lett2020;117:212902

[21]

Bi K,Hao Y.Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density.Nano Energy2018;51:513-23

[22]

Chen B,Wang T.Ultrahigh energy storage capacitors based on freestanding single-crystalline antiferroelectric membrane/PVDF composites.Adv Funct Mater2023;33:2302683

[23]

Sun J,Song J,Yao Q.The microstructure, ferroelectric and dielectric behaviors of Na0.5Bi0.5(Ti,Fe)O3 thin films synthesized by chemical solution deposition: effect of precursor solution concentration.Ceram Int2017;43:2033-8

[24]

Yang BB,Song DP.Bi3.25La0.75Ti3O12 thin film capacitors for energy storage applications.Appl Phys Lett2017;111:183903

[25]

Tong S,Narayanan M.Lead lanthanum zirconate titanate ceramic thin films for energy storage.ACS Appl Mater Interfaces2013;5:1474-80

[26]

Pan H,Shen Y.BiFeO3–SrTiO3 thin film as a new lead-free relaxor-ferroelectric capacitor with ultrahigh energy storage performance.J Mater Chem A2017;5:5920-6

[27]

Pan H,Liu Y.Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design.Science2019;365:578-82

[28]

Pan H,Xu S.Ultrahigh energy storage in superparaelectric relaxor ferroelectrics.Science2021;374:100-4

[29]

Lee HJ,Cho KH.Flexible high energy density capacitors using La-doped PbZrO3 anti-ferroelectric thin films.Appl Phys Lett2018;112:092901

[30]

Hao X,Yang J,Xu J.High energy-storage performance in Pb0.91La0.09(Ti0.65Zr0.35)O3 relaxor ferroelectric thin films.J Appl Phys2012;112:114111

[31]

Lin Z,Liu Z,Rémiens D.Large energy storage density, low energy loss and highly stable (Pb0.97La0.02)(Zr0.66Sn0.23Ti0.11)O3 antiferroelectric thin-film capacitors.J Eur Ceram Soc2018;38:3177-81

[32]

Ali F,Zhou D.Silicon-doped hafnium oxide anti-ferroelectric thin films for energy storage.J Appl Phys2017;122:144105

[33]

Acharya M,Ramesh M.Exploring the Pb1-xSrxHfO3 system and potential for high capacitive energy storage density and efficiency.Adv Mater2022;34:2105967

[34]

Yang B,Jiang RJ.Enhanced energy storage in antiferroelectrics via antipolar frustration.Nature2025;637:1104-10

[35]

Cheng H,Zhang YX.Demonstration of ultra-high recyclable energy densities in domain-engineered ferroelectric films.Nat Commun2017;8:1999 PMCID:PMC5722920

[36]

Wang J,Chen L,Zhang T.Phase-field simulations of ferroelectric/ferroelastic polarization switching.Acta Mater2004;52:749-64

[37]

Gao R,Wang J,Huang H.Designed giant room-temperature electrocaloric effects in metal-free organic perovskite [MDABCO](NH4)I3 by phase–field simulations.Adv Funct Mater2021;31:2104393

[38]

Wang J,Li Q,Chen L.Phase transitions and domain structures of ferroelectric nanoparticles: Phase field model incorporating strong elastic and dielectric inhomogeneity.Acta Mater2013;61:7591-603

[39]

Choudhury S,Krilliii C.Phase-field simulation of polarization switching and domain evolution in ferroelectric polycrystals.Acta Mater2005;53:5313-21

[40]

Xu BX,Gross D.Fracture simulation of ferroelectrics based on the phase field continuum and a damage variable.Int J Fract2010;166:163-72

[41]

Huang S,Chen J.Phase-field modeling for energy storage optimization in ferroelectric ceramics capacitors during heat treatment process.Ceram Int2024;50:52020-6

[42]

Shen ZH,Lin Y,Chen LQ.High-throughput phase-field design of high-energy-density polymer nanocomposites.Adv Mater2018;30:1704380

[43]

Shen Z,Cheng X.Designing polymer nanocomposites with high energy density using machine learning.npj Comput Mater2021;7:578

[44]

Shen Z,Jiang J.Phase-field model of electrothermal breakdown in flexible high-temperature nanocomposites under extreme conditions.Adv Energy Mater2018;8:1800509

[45]

Li F,Yang T.The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals.Nat Commun2016;7:13807 PMCID:PMC5187463

[46]

Li F,Xu Z.The contributions of polar nanoregions to the dielectric and piezoelectric responses in domain-engineered relaxor-PbTiO3 crystals.Adv Funct Mater2017;27:1700310

[47]

Shi X,Xu J,Huang H.Quantitative investigation of polar nanoregion size effects in relaxor ferroelectrics.Acta Mater2022;237:118147

[48]

Glinchuk MD.A random field theory based model for ferroelectric relaxors.J Phys Condens Matter1996;8:6985

[49]

Hong Z,Wang D,Ren X.Role of point defects in the formation of relaxor ferroelectrics.Acta Mater2022;225:117558

[50]

Wang S,Xu B.A phase-field model of relaxor ferroelectrics based on random field theory.Int J Solids Struct2016;83:142-53

[51]

Song Y,Wang J.Predicting dielectric properties of ferroelectric materials with point defects by a phase-field model.ACS Appl Electron Mater2024;6:3726-33

[52]

Song Y,Wang J.Thickness-dependent dielectric properties in doped relaxor films by the phase-field model.ACS Appl Electron Mater2024;6:6477-83

[53]

Xu K,Guo C,Huang H.Antiferroelectric domain modulation enhancing energy storage performance by phase-field simulations.J Materiomics2025;11:100901

[54]

Lin B,Yang T.Ultrahigh electromechanical response from competing ferroic orders.Nature2024;633:798-803 PMCID:PMC11424475

[55]

Xue F,Gu Y,Kalinin SV.Composition- and pressure-induced ferroelectric to antiferroelectric phase transitions in Sm-doped BiFeO3 system.Appl Phys Lett2015;106:012903

[56]

Xu K,Shao C,Huang H.Design of polar boundaries enhancing negative electrocaloric performance by antiferroelectric phase-field simulations.npj Comput Mater2024;10:1334

[57]

Xu K,Dong S,Huang H.Antiferroelectric phase diagram enhancing energy-storage performance by phase-field simulations.ACS Appl Mater Interfaces2022;14:25770-80

[58]

Li Q,Yang T.Sandwich-structured polymer nanocomposites with high energy density and great charge-discharge efficiency at elevated temperatures.Proc Natl Acad Sci U S A2016;113:9995-10000 PMCID:PMC5018787

[59]

Shen Z,Zhang X.Space charge effects on the dielectric response of polymer nanocomposites.Appl Phys Lett2017;111:092901

[60]

Zou K,Bai P.Giant room-temperature electrocaloric effect of polymer-ceramic composites with orientated BaSrTiO3 nanofibers.Nano Lett2022;22:6560-6

[61]

Bao Z,Shen Z.Negatively charged nanosheets significantly enhance the energy-storage capability of polymer-based nanocomposites.Adv Mater2020;32:1907227

[62]

Li Z,Yang X.Ultrahigh charge-discharge efficiency and enhanced energy density of the sandwiched polymer nanocomposites with poly(methyl methacrylate) layer.Compos Sci Technol2021;202:108591

[63]

Qian J,Shen Z.Interfacial coupling boosts giant electrocaloric effects in relaxor polymer nanocomposites: in situ characterization and phase-field simulation.Adv Mater2019;31:1801949

[64]

Cai Z,Li L.Electrical treeing: a phase-field model.Extreme Mech Lett2019;28:87-95

[65]

Cai Z,Luo B,Wu L.Nanocomposites with enhanced dielectric permittivity and breakdown strength by microstructure design of nanofillers.Compos Sci Technol2017;151:109-14

[66]

Shen Z,Cheng X,Chen L.High-throughput data-driven interface design of high-energy-density polymer nanocomposites.J Materiomics2020;6:573-81

[67]

Wang Z,Tang H.Effects of nanofibers orientation and aspect ratio on dielectric properties of nanocomposites: a phase-field simulation.ACS Appl Mater Interfaces2022;14:42513-21

[68]

Dong X,Wu X,Fu Z.A novel lead-free relaxor with endotaxial nanostructures for capacitive energy storage.SusMat2024;4:116-25

[69]

Wang T,Peng R.Giant energy storage of flexible composites by embedding superparaelectric single-crystal membranes.Nano Energy2023;113:108511

[70]

Cai Z,Wang H.Giant dielectric breakdown strength together with ultrahigh energy density in ferroelectric bulk ceramics via layer-by-layer engineering.J Mater Chem A2019;7:17283-91

[71]

Guo Y,Li D.Ultra-high capacitive energy storage density at 150 °C achieved in polyetherimide composite films by filler and structure design.Adv Mater2025;37:e2415652

[72]

Jiang J,Cai X.Polymer nanocomposites with interpenetrating gradient structure exhibiting ultrahigh discharge efficiency and energy density.Adv Energy Mater2019;9:1803411

[73]

Zhao P,Chen L.Ultra-high energy storage performance in lead-free multilayer ceramic capacitors via a multiscale optimization strategy.Energy Environ Sci2020;13:4882-90

[74]

Khondabi M,Javanbakht M.Revisiting the dielectric breakdown in a polycrystalline ferroelectric: a phase-field simulation study.Adv Theory Simul2023;6:2200314

[75]

Shen Y,Zhao J.Constructing novel binary Bi0.5Na0.5TiO3-based composite ceramics for excellent energy storage performances via defect engineering.Chem Eng J2022;439:135762

[76]

Li H,Chen X.Stable relaxor ferroelectric phase of NaNbO3-based ceramic with superb energy storage performances.Mater Today Phys2023;38:101208

[77]

Huang J,Zhang Y.Realizing ultrahigh energy storage density in (Bi0.5Na0.5)0.94Ba0.06TiO3-based ceramics via manipulating the domain configuration and grain boundary density.ACS Appl Mater Interfaces2024;16:57334-45

[78]

Ye H,Pan Z.Significantly improvement of comprehensive energy storage performances with lead-free relaxor ferroelectric ceramics for high-temperature capacitors applications.Acta Mater2021;203:116484

[79]

Wang X,Zhao P.Optimizing the grain size and grain boundary morphology of (K,Na)NbO3-based ceramics: paving the way for ultrahigh energy storage capacitors.J Materiomics2021;7:780-9

[80]

Yang B,Pan H.High-entropy enhanced capacitive energy storage.Nat Mater2022;21:1074-80

[81]

Cai Z,Hong W,Zhao Q.Grain-size–dependent dielectric properties in nanograin ferroelectrics.J Am Ceram Soc2018;101:5487-96

[82]

Wei K,Li G,Qi H.Enhancing comprehensive energy storage properties in Pb-free relaxor AFE/FE system via heterogeneous structure tuning and defect engineering.Acta Mater2024;278:120278

[83]

Li Y,Zhang M.Realizing outstanding energy storage performance in KBT-based lead-free ceramics via suppressing space charge accumulation.Small2024;20:e2401229

[84]

Cai Z,Zhu C.Dielectric breakdown behavior of ferroelectric ceramics: the role of pores.J Eur Ceram Soc2021;41:2533-8

[85]

Yang L,Li Q,Zhang S.Excellent energy storage properties achieved in sodium niobate-based relaxor ceramics through doping tantalum.ACS Appl Mater Interfaces2022;14:32218-26

[86]

Yang L,Lin Y,Nan C.Improved energy storage performance of NaNbO3-based antiferroelectrics by tuning polarizability and defect engineering.J Am Ceram Soc2024;107:1848-58

[87]

Yang L,Cheng Z.Ultra-high energy storage performance with mitigated polarization saturation in lead-free relaxors.J Mater Chem A2019;7:8573-80

[88]

Westphal V,Glinchuk MD.Diffuse phase transitions and random-field-induced domain states of the “relaxor” ferroelectric PbMg1/3Nb2/3O3.Phys Rev Lett1992;68:847

[89]

Chai Q,Deng Z.Excellent energy storage properties in lead-free ferroelectric ceramics via heterogeneous structure design.Nat Commun2025;16:1633

[90]

Wang W,Shi W.Enhanced energy storage properties in lead-free (Na0.5Bi0.5)0.7Sr0.3TiO3-based relaxor ferroelectric ceramics through a cooperative optimization strategy.ACS Appl Mater Interfaces2023;15:6990-7001

[91]

Li D,Wang D.Lead-free relaxor ferroelectric ceramics with ultrahigh energy storage densities via polymorphic polar nanoregions design.Small2023;19:2206958

[92]

Li D,Zhao W.A high-temperature performing and near-zero energy loss lead-free ceramic capacitor.Energy Environ Sci2023;16:4511-21

[93]

Li D,Wang D,Guo Y.Improved energy storage properties achieved in (K, Na)NbO3-based relaxor ferroelectric ceramics via a combinatorial optimization strategy.Adv Funct Mater2022;32:2111776

[94]

Zhao W,Li D.Broad-high operating temperature range and enhanced energy storage performances in lead-free ferroelectrics.Nat Commun2023;14:5725 PMCID:PMC10504284

[95]

Zhang M,Yang BB.Ultrahigh energy storage in high-entropy ceramic capacitors with polymorphic relaxor phase.Science2024;384:185-9

[96]

Huang W,Zhang R.Effect of deformation modes on continuous dynamic recrystallization of extruded AZ31 Mg alloy.J Alloys Compd2022;897:163086

[97]

Yang B,Gong C.Design of high-entropy relaxor ferroelectrics for comprehensive energy storage enhancement.Adv Funct Mater2024;34:2409344

[98]

Li W,Liu RL.Generative learning facilitated discovery of high-entropy ceramic dielectrics for capacitive energy storage.Nat Commun2024;15:4940 PMCID:PMC11164696

[99]

Yang B,Huang H.Engineering relaxors by entropy for high energy storage performance.Nat Energy2023;8:956-64

[100]

Peng H,Liu Z.High-entropy relaxor ferroelectric ceramics for ultrahigh energy storage.Nat Commun2024;15:5232 PMCID:PMC11187193

[101]

Sun Z,Luo H.Superior capacitive energy-storage performance in Pb-free relaxors with a simple chemical composition.J Am Chem Soc2023;145:6194-202

[102]

Luo J,Zheng T,Liu Y.A slush-like polar structure for high energy storage performance in a Sr0.7Bi0.2TiO3 lead-free relaxor ferroelectric thin film.J Mater Chem A2022;10:7357-65

[103]

Wang H,Fu B.Hierarchically polar structures induced superb energy storage properties for relaxor Bi0.5Na0.5TiO3-based ceramics.Chem Eng J2023;471:144446

[104]

Tao H,Liu Y.Ultrahigh performance in lead-free piezoceramics utilizing a relaxor slush polar state with multiphase coexistence.J Am Chem Soc2019;141:13987-94

[105]

Yuan R,Zhuang S.Machine learning-enabled superior energy storage in ferroelectric films with a slush-like polar state.Nano Lett2023;23:4807-14

[106]

Liu Z,Cao W,Lookman T.Enhanced energy storage with polar vortices in ferroelectric nanocomposites.Phys Rev Appl2017;8:034014

[107]

Hou X,Zhang J,Li H.Effect of grain size on the electrocaloric properties of polycrystalline ferroelectrics.Phys Rev Appl2021;15:054019

[108]

Wang Z,Zheng S.Effect of grain size and grain boundary on the energy storage performance of polycrystalline ferroelectrics.Appl Phys Lett2024;125:152903

[109]

Zhu C,Xiao M.Boosting effective capacitance of nanograined BaTiO3-based ceramics via a precise core-shell-structure optimization strategy.J Alloys Compd2024;984:174037

[110]

Cai Z,Wu L,Feng P.Vortex domain configuration for energy-storage ferroelectric ceramics design: a phase-field simulation.Appl Phys Lett2021;119:032901

[111]

Wang J,Ma J.Polar Solomon rings in ferroelectric nanocrystals.Nat Commun2023;14:3941 PMCID:PMC10319878

[112]

Liu D,Jafri HM.Phase-field simulations of vortex chirality manipulation in ferroelectric thin films.npj Quantum Mater2022;7:444

[113]

Das S,Stoica VA.Local negative permittivity and topological phase transition in polar skyrmions.Nat Mater2021;20:194-201

[114]

Das S,Hong Z.Observation of room-temperature polar skyrmions.Nature2019;568:368-72

[115]

Zhou L,Das S.Local manipulation and topological phase transitions of polar skyrmions.Matter2022;5:1031-41

[116]

Du G,Huang Y,Tian H.Design of polar skyrmion-based nanoelectronic prototype devices with phase-field simulations.Adv Funct Mater2024;34:2405594

[117]

Liu Y,Pan H.Phase-field simulations of tunable polar topologies in lead-free ferroelectric/paraelectric multilayers with ultrahigh energy-storage performance.Adv Mater2022;34:2108772

[118]

Zhao Y,Wang K.Achieving an ultra-high capacitive energy density in ferroelectric films consisting of superfine columnar nanograins.Energy Storage Mater2021;39:81-8

[119]

Wang J,Wang B,Ren Y.Strain engineering of dischargeable energy density of ferroelectric thin-film capacitors.Nano Energy2020;72:104665

[120]

Xu S,Pan H.Strain engineering of energy storage performance in relaxor ferroelectric thin film capacitors.Adv Theory Simul2022;5:2100324

[121]

Guo C,Dong S.Advancing energy-storage performance in freestanding ferroelectric thin films: insights from phase-field simulations.Adv Elect Mater2024;10:2400001

[122]

Ma CH,Zheng Y.Synthesis of a new ferroelectric relaxor based on a combination of antiferroelectric and paraelectric systems.ACS Appl Mater Interfaces2022;14:22278-86

[123]

Zhu J,Zhong B,Xu B.Domain size and charge defects affecting the polarization switching of antiferroelectric domains.Chinese Phys B2023;32:047701

[124]

Wang J,Liu Z.Superior energy storage performance realized in antiferroelectric 0.10 wt% MnO2–AgNbO3 ceramics via Bi-doping induced phase engineering.J Mater Chem A2023;11:22512-21

[125]

Karniadakis GE,Lu L,Wang S.Physics-informed machine learning.Nat Rev Phys2021;3:422-40

[126]

Lu L,Pang G,Karniadakis GE.Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators.Nat Mach Intell2021;3:218-29

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/