High-throughput screening of phosphide compounds for potassium-ion conductive cathode application

Yawen Li , Natalia A. Kabanova , Vladislav A. Blatov , Junjie Wang

Journal of Materials Informatics ›› 2025, Vol. 5 ›› Issue (2) : 21

PDF
Journal of Materials Informatics ›› 2025, Vol. 5 ›› Issue (2) :21 DOI: 10.20517/jmi.2024.87
Research Article

High-throughput screening of phosphide compounds for potassium-ion conductive cathode application

Author information +
History +
PDF

Abstract

Cathode materials are crucial in potassium (K) batteries, directly impacting their performance and lifespan. In this study, we used a combination of geometrical-topological (GT) analysis, bond valence site energy (BVSE), Kinetic Monte Carlo (KMC), and first-principles calculations to screen potential cathode materials for K-ion batteries among inorganic phosphides. Through GT analysis, we screened 143 K- and P-containing compounds and identified 30 with two- or three-dimensional K-ion migration pathways. BVSE further narrowed down 13 compounds with K-ion migration energies below 1 eV. KMC simulations of ionic conductivity led to the selection of K3Cu3P2 for detailed first-principles calculations. It was demonstrated that K3Cu3P2 possesses a reversible capacity of 72.47 mAh·g-1, minimal volume change (1.47%), and a charge compensation mechanism involving Cu and P. Its low migration energy barrier contributes to a high ionic diffusion coefficient and conductivity of 1.87 × 10-3 S·cm-1 at 25 °C, making K3Cu3P2 a promising candidate for stable and efficient K-ion diffusion in cathode applications.

Keywords

High-throughput calculation screening / potassium batteries / cathode material / geometrical-topological approach / bond valence site energy / density functional theory

Cite this article

Download citation ▾
Yawen Li, Natalia A. Kabanova, Vladislav A. Blatov, Junjie Wang. High-throughput screening of phosphide compounds for potassium-ion conductive cathode application. Journal of Materials Informatics, 2025, 5(2): 21 DOI:10.20517/jmi.2024.87

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhao ZH,Li J.Photocatalytic acetylene hydrochlorination by pairing proton reduction and chlorine oxidation over g-C3N4/BiOCl catalysts.J Am Chem Soc2024;146:29441-9

[2]

Zhang L,Lin J.Deprotonated 2-thiolimidazole serves as a metal-free electrocatalyst for selective acetylene hydrogenation.Nat Chem2024;16:893-900

[3]

An S,Bu J.Multi-functional formaldehyde-nitrate batteries for wastewater refining, electricity generation, and production of ammonia and formate.Angew Chem Int Ed Engl2024;63:e202318989

[4]

Bu J,Li J.Highly selective electrocatalytic alkynol semi-hydrogenation for continuous production of alkenols.Nat Commun2023;14:1533 PMCID:PMC10027872

[5]

Bu J,Ma W.Selective electrocatalytic semihydrogenation of acetylene impurities for the production of polymer-grade ethylene.Nat Catal2021;4:557-64

[6]

Goodenough JB.The Li-ion rechargeable battery: a perspective.J Am Chem Soc2013;135:1167-76

[7]

Chen Y,Zhao Y.A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards.J Energy Chem2021;59:83-99

[8]

Xiao J,Glossmann T,Liu Z.From laboratory innovations to materials manufacturing for lithium-based batteries.Nat Energy2023;8:329-39

[9]

Yuan K,Shen C.Self-ball milling strategy to construct high-entropy oxide coated LiNi0.8Co0.1Mn0.1O2 with enhanced electrochemical performance.J Adv Ceram2022;11:882-92

[10]

Ding X,Li X.Fast-charging anodes for lithium ion batteries: progress and challenges.Chem Commun2024;60:2472-88

[11]

Kou P,Wang Z.Opportunities and challenges of layered lithium-rich manganese-based cathode materials for high energy density lithium-ion batteries.Energy Fuels2023;37:18243-65

[12]

Miao N,Zhang H.Discovery of two-dimensional hexagonal MBene HfBO and exploration on its potential for lithium-ion storage.Angew Chem Int Ed Engl2023;62:e202308436

[13]

Miao N,Wang J.A rising layered boride family for energy and catalysis applications: novel hexagonal MAB phases and MBenes.ChemSusChem2024;17:e202400229

[14]

Shen Q,Wang J.Biomass-derived two-dimensional N,O-doped carbon with embedded binary-metal nanoparticles enables dendrite-free potassium-metal anodes.J Mater Chem A2023;11:9829-39

[15]

Wang J,Gong Y.Discovery of hexagonal ternary phase Ti2InB2 and its evolution to layered boride TiB.Nat Commun2019;10:2284 PMCID:PMC6533257

[16]

Shen Q,He Y.Defect engineering of hexagonal MAB phase Ti2InB2 as anode of lithium-ion battery with excellent cycling stability.Adv Sci2024;11:e2308589 PMCID:PMC11151021

[17]

Miao N,Gong Y.Computational prediction of boron-based MAX phases and MXene derivatives.Chem Mater2020;32:6947-57

[18]

Jang I,Song B,Kang YC.Improving ionic conductivity of von-Alpen-type NASICON ceramic electrolytes via magnesium doping.J Adv Ceram2023;12:1058-66

[19]

Liu M,Gong Y.Interfacial-catalysis-enabled layered and inorganic-rich SEI on hard carbon anodes in ester electrolytes for sodium-ion batteries.Adv Mater2023;35:e2300002

[20]

Kate RS,Chothe UP.Critical review of the recent progress and challenges of polyanion Na3V2(PO4)3 cathode materials in rechargeable sodium-ion batteries.J Mater Chem A2024;12:7418-51

[21]

Wang L,Yao X,Gao Z.Research progress and modification measures of anode and cathode materials for sodium-ion batteries.ChemElectroChem2024;11:e202300414

[22]

Eftekhari A,Ji X.Potassium secondary batteries.ACS Appl Mater Interfaces2017;9:4404-19

[23]

Zhang W,Guo Z.Approaching high-performance potassium-ion batteries via advanced design strategies and engineering.Sci Adv2019;5:eaav7412 PMCID:PMC6510555

[24]

Han J,Liu F.Investigation of K3V2(PO4)3/C nanocomposites as high-potential cathode materials for potassium-ion batteries.Chem Commun2017;53:1805-8

[25]

Chihara K,Kubota K.KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries.Chem Commun2017;53:5208-11

[26]

Kim H,Kim JC.Investigation of potassium storage in layered P3-type K0.5MnO2 cathode.Adv Mater2017;29

[27]

Kim H,Bo S,Kwon D.K-ion batteries based on a P2-type K0.6CoO2 cathode.Adv Energy Mater2017;7:1700098

[28]

Yang Z,Zhang G.Constructing Sb-O-C bond to improve the alloying reaction reversibility of free-standing Sb2Se3 nanorods for potassium-ion batteries.Nano Energy2022;93:106764

[29]

Li W,Zuo J,Li X.Emerging carbon-based flexible anodes for potassium-ion batteries: progress and opportunities.Front Chem2022;10:1002540 PMCID:PMC9493046

[30]

Kim H.Opportunities and challenges in cathode development for non-lithium-ion batteries.eScience2024;4:100232

[31]

Liu X,Wang Z.Design and optimization of carbon materials as anodes for advanced potassium-ion storage.Rare Met2024;43:5516-48

[32]

Jonderian A,Yoon G.Accelerated development of high voltage Li-ion cathodes.Adv Energy Mater2022;12:2201704

[33]

Guo X,Yang J.Machine-learning assisted high-throughput discovery of solid-state electrolytes for Li-ion batteries.J Mater Chem A2024;12:10124-36

[34]

Xiao R,Chen L.High-throughput computational discovery of K2CdO2 as an ion conductor for solid-state potassium-ion batteries.J Mater Chem A2020;8:5157-62

[35]

Wang Y,Du P,Sun Q.Screening topological quantum cathode materials for K-ion batteries by graph neural network and first-principles calculations.ACS Appl Energy Mater2023;6:4503-10

[36]

Toffoletti L,Landesfeind J.Lithium ion mobility in lithium phosphidosilicates: crystal structure, 7Li, 29Si, and 31P MAS NMR spectroscopy, and impedance spectroscopy of Li8SiP4 and Li2SiP2.Chemistry2016;22:17635-45

[37]

Haffner A,Johrendt D.Supertetrahedral networks and lithium-ion mobility in Li2SiP2 and LiSi2P3.Angew Chem Int Ed Engl2016;55:13585-8

[38]

Haffner A,Moudrakovski I,Johrendt D.Fast sodium-ion conductivity in supertetrahedral phosphidosilicates.Angew Chem Int Ed Engl2018;57:6155-60

[39]

Haffner A,Zeman OEO,Lotsch BV.Polymorphism and fast potassium-ion conduction in the T5 supertetrahedral phosphidosilicate KSi2P3.Angew Chem Int Ed Engl2021;60:13641-6 PMCID:PMC8252096

[40]

Zhang Z,Sun S.Optimized valence state of Co and Ni in high-entropy alloy for high active-stable OER.Rare Met2023;42:3607-13

[41]

Kabanov AA,Bezuglov IA.7.13 - Computational design of materials for metal-ion batteries. In: Comprehensive inorganic chemistry III. Elsevier; 2023. pp. 404-29.

[42]

Blatov VA,Proserpio DM.Applied topological analysis of crystal structures with the program package ToposPro.Cryst Growth Des2014;14:3576-86

[43]

Anurova N,Ilyushin G,Ivanovschitz A.Migration maps of Li+ cations in oxygen-containing compounds.Solid State Ionics2008;179:2248-54

[44]

Meutzner F,Kabanova NA.On the way to new possible Na-ion conductors: the voronoi-dirichlet approach, data mining and symmetry considerations in ternary Na oxides.Chemistry2015;21:16601-8

[45]

Morkhova YA,Leisegang T,Blatov VA.Computational search for novel Zn-ion conductors - a crystallochemical, bond valence, and density functional study.J Phys Chem C2021;125:17590-9

[46]

Slater JC.Atomic radii in crystals.J Chem Phys1964;41:3199-204

[47]

Shannon RD,Fischer RX.Empirical electronic polarizabilities: deviations from the additivity rule. II. Structures exhibiting ion conductivity.Cryst Res Technol2019;54:1900037

[48]

Chen H.Bond softness sensitive bond-valence parameters for crystal structure plausibility tests.IUCrJ2017;4:614-25 PMCID:PMC5619853

[49]

Chen H,Adams S.SoftBV - a software tool for screening the materials genome of inorganic fast ion conductors.Acta Crystallogr B Struct Sci Cryst Eng Mater2019;75:18-33

[50]

Wong LL,Dai R,Chew WS.Bond valence pathway analyzer - an automatic rapid screening tool for fast ion conductors within softBV.Chem Mater2021;33:625-41

[51]

He B,Ye A.A highly efficient and informative method to identify ion transport networks in fast ion conductors.Acta Mater2021;203:116490

[52]

Wong LL,Adams S.Design of fast ion conducting cathode materials for grid-scale sodium-ion batteries.Phys Chem Chem Phys2017;19:7506-23

[53]

Chung SY,Chiang YM.Electronically conductive phospho-olivines as lithium storage electrodes.Nat Mater2002;1:123-8

[54]

Gu W,Prasada Rao R,Adams S.Effects of penta- and trivalent dopants on structure and conductivity of Li7La3Zr2O12.Solid State Ionics2015;274:100-5

[55]

Hohenberg P.Inhomogeneous electron gas.Phys Rev1964;136:B864-71

[56]

Blöchl PE.Projector augmented-wave method.Phys Rev B Condens Matter1994;50:17953-79

[57]

Kresse G.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys Rev B Condens Matter1996;54:11169-86

[58]

Wang V,Liu J,Geng W.VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code.Comput Phys Commun2021;267:108033

[59]

Perdew JP,Ernzerhof M.Generalized gradient approximation made simple.Phys Rev Lett1996;77:3865-8

[60]

Lalroliana B,Lalhriatzuala .DFT + U study of electronic and optical properties of Cu3TMTe4: TM = V, Nb, Ta with incorporation of SOC.Mater Today Proc2023;In Press:

[61]

Toukmaji AY.Ewald summation techniques in perspective: a survey.Comput Phys Commun1996;95:73-92

[62]

Henkelman G.Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points.J Chem Phys2000;113:9978-85

[63]

Tan P,Shyy W.Prediction of the theoretical capacity of non-aqueous lithium-air batteries.Appl Energy2013;109:275-82

[64]

Toriyama MY,Van der Ven A.Potassium ordering and structural phase stability in layered KxCoO2.ACS Appl Energy Mater2019;2:2629-36

[65]

Herr JD.Accelerating ab initio molecular dynamics simulations by linear prediction methods.Chem Phys Lett2016;661:42-7

[66]

Kim JS,Choi S.Thermally induced S-sublattice transition of Li3PS4 for fast lithium-ion conduction.J Phys Chem Lett2018;9:5592-7

[67]

Eremin R,Morkhova Y,Blatov V.High-throughput search for potential potassium ion conductors: a combination of geometrical-topological and density functional theory approaches.Solid State Ionics2018;326:188-99

[68]

Eisenmann B.On new ternary alkali metal phosphides: K2CuP, NaZnP and K4CdP2.Z Naturforsch B1985;40:1419-23

[69]

Eisenmann B.Intermetallic compounds with HgCl2 isoelectronic anions: crystal structure and vibrational spectra of Na4HgP2, K4ZnP2, K4CdP2 and K4HgP2.Z Naturforsch B1989;44:1228-32

[70]

Eisenmann B,Somer M.Linear anions [CuAs2]5-, [AuP2]5- and [AuAs2]5- in potassium compounds.J Alloys Compd1992;178:431-9

[71]

Somer M,Peters K.Crystal structure of tetrapotassium diphosphidoberyllate, K4BeP2.Zeitschrift für Kristallographie1990;192:263-4

[72]

Savelsberg G.On the preparation and crystal structure of K3CU3P.Z Naturforsch B1978;33:590-2

[73]

Eisenmann B,Somer M.Crystal structure of dipotassium catena-phosphidoaurate(I), K2AuP.Crystall Mater1991;197:277-8

[74]

Orikasa Y,Yamashige H.Ionic conduction in lithium ion battery composite electrode governs cross-sectional reaction distribution.Sci Rep2016;6:26382 PMCID:PMC4872260

[75]

Blase W,Somer M.Crystal structure of tripotassium catenadi-μ-phosphido-indate, K3InP2.Zeitschrift für Kristallographie1991;195:109-10

[76]

Flores EM,Piotrowski MJ.Structural and electronic properties of bulk ZnX (X = O, S, Se, Te), ZnF2, and ZnO/ZnF2: a DFT investigation within PBE, PBE + U, and hybrid HSE functionals.J Phys Chem A2020;124:3778-85

[77]

Shevchenko AP,Karpukhin IY.Topological representations of crystal structures: generation, analysis and implementation in the TopCryst system.Sci Technol Adv Mater Methods2022;2:250-65

[78]

Ohse L,Blase W.Compounds with SiS2 isoelectronic anions 1[AlX4/23-] and 1[InP4/23-]: synthesis, crystal structures and vibrational spectra of Na3[AlX2], K2Na[AlX2] and K3[InP2] (X = P, As).Z Naturforsch B1993;48:1027-34

[79]

Schurz CM.Chains of trans-edge connected [ZM4] tetrahedra (Z=N and O) in the lanthanide nitride chlorides M2NCl3 and Na2M4ONCl9 (M=La–Nd).J Alloys Compd2009;485:110-8

[80]

Wu W.Screening topological quantum materials for Na-ion battery cathode.ACS Mater Lett2022;4:175-80

[81]

Hosaka T,Kubota K.Polyanionic compounds for potassium-ion batteries.Chem Rec2019;19:735-45

[82]

Sanville E,Smith R.Improved grid-based algorithm for Bader charge allocation.J Comput Chem2007;28:899-908

[83]

Henkelman G,Jónsson H.A climbing image nudged elastic band method for finding saddle points and minimum energy paths.J Chem Phys2000;113:9901-4

[84]

Ling S,Xiao R.High-throughput theoretical design of lithium battery materials.Chin Phys B2016;25:018208

[85]

Nishitani Y,Ichikawa K.Evaluation of magnesium ion migration in inorganic oxides by the bond valence site energy method.Solid State Ionics2018;315:111-5

AI Summary AI Mindmap
PDF

53

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/