PINK: physical-informed machine learning for lattice thermal conductivity

Yujie Liu , Xiaoying Wang , Yuzhou Hao , Xuejie Li , Jun Sun , Turab Lookman , Xiangdong Ding , Zhibin Gao

Journal of Materials Informatics ›› 2025, Vol. 5 ›› Issue (1) : 12

PDF
Journal of Materials Informatics ›› 2025, Vol. 5 ›› Issue (1) :12 DOI: 10.20517/jmi.2024.86
Research Article

PINK: physical-informed machine learning for lattice thermal conductivity

Author information +
History +
PDF

Abstract

Lattice thermal conductivity (κL) is crucial for efficient thermal management in electronics and energy conversion technologies. Traditional methods for predicting κL are often computationally expensive, limiting their scalability for large-scale material screening. Empirical models, such as the Slack model, offer faster alternatives but require time-consuming calculations for key parameters such as sound velocity and the Grüneisen parameter. This work presents a high-throughput framework, physical-informed kappa (PINK), which combines the predictive power of crystal graph convolutional neural networks (CGCNNs) with the physical interpretability of the Slack model to predict κL directly from crystallographic information files (CIFs). Unlike previous approaches, PINK enables rapid, batch predictions by extracting material properties such as bulk and shear modulus from CIFs using a well-trained CGCNN model. These properties are then used to compute the necessary parameters for κL calculation through a simplified physical formula. PINK was applied to a dataset of 377,221 stable materials, enabling the efficient identification of promising candidates with ultralow κL values, such as Ag3Te4W and Ag3Te4Ta. The platform, accessible via a user-friendly interface, offers an unprecedented combination of speed, accuracy, and scalability, significantly accelerating material discovery for thermal management and energy conversion applications.

Keywords

Physical-informed machine learning / thermoelectrics / lattice thermal conductivity / phonon engineering

Cite this article

Download citation ▾
Yujie Liu, Xiaoying Wang, Yuzhou Hao, Xuejie Li, Jun Sun, Turab Lookman, Xiangdong Ding, Zhibin Gao. PINK: physical-informed machine learning for lattice thermal conductivity. Journal of Materials Informatics, 2025, 5(1): 12 DOI:10.20517/jmi.2024.86

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li N,Wang L,Hänggi P.Colloquium: Phononics: manipulating heat flow with electronic analogs and beyond.Rev Mod Phys2012;84:1045

[2]

van Erp R, Soleimanzadeh R, Nela L, Kampitsis G, Matioli E. Co-designing electronics with microfluidics for more sustainable cooling.Nature2020;585:211-6

[3]

Kim HS,Chen G,Ren Z.Relationship between thermoelectric figure of merit and energy conversion efficiency.Proc Natl Acad Sci U S A2015;112:8205-10 PMCID:PMC4500231

[4]

Ouyang H,Gao Z.Kirigami-inspired thermal regulator.Phys Rev Appl2023;19:L011001

[5]

Kang JS,Wu H,Aoki T.Integration of boron arsenide cooling substrates into gallium nitride devices.Nat Electron2021;4:416-23

[6]

Xu L,Wang Y,Ding X.Enhanced average power factor and ZT value in PbSe thermoelectric material with dual interstitial doping.Energy Environ Sci2024;17:2018-27

[7]

Broido DA,Birner G,Stewart DA.Intrinsic lattice thermal conductivity of semiconductors from first principles.Appl Phys Lett2007;91:231922

[8]

Stackhouse S.Theoretical methods for calculating the lattice thermal conductivity of minerals.Rev Mineral Geochem2010;71:253-69

[9]

Tadano T.Self-consistent phonon calculations of lattice dynamical properties in cubic SrTiO3 with first-principles anharmonic force constants.Phys Rev B2015;92:054301

[10]

Carbogno C,Scheffler M.Ab initio green-kubo approach for the thermal conductivity of solids.Phys Rev Lett2017;118:175901

[11]

Fan Z,Wang H,Donadio D.Force and heat current formulas for many-body potentials in molecular dynamics simulations with applications to thermal conductivity calculations.Phys Rev B2015;92:094301

[12]

Yusuf A.Electrical, thermomechanical and cost analyses of a low-cost thermoelectric generator.Energy2022;241:122934

[13]

Luo Y,Yuan H,Fang Y.Predicting lattice thermal conductivity via machine learning: a mini review.npj Comput Mater2023;9:964

[14]

Mishin Y.Machine-learning interatomic potentials for materials science.Acta Mater2021;214:116980

[15]

Liu C,Zhao Y.Actively and reversibly controlling thermal conductivity in solid materials.Phys Rep2024;1058:1-32

[16]

Shi XL,Lyu W.Advancing flexible thermoelectrics for integrated electronics.Chem Soc Rev2024;53:9254-305

[17]

Callaway J.Model for lattice thermal conductivity at low temperatures.Phys Rev1959;113:1046-51

[18]

Zhang Y.First-principles Debye–Callaway approach to lattice thermal conductivity.J Materiomics2016;2:237-47

[19]

Slack G.Nonmetallic crystals with high thermal conductivity.J Phys Chem Solids1973;34:321-35

[20]

Morelli DT.High lattice thermal conductivity solids. In: Shindé SL, Goela JS, editors. High thermal conductivity materials. New York: Springer-Verlag; 2006. pp. 37-68.

[21]

Nielsen MD,Heremans JP.Lone pair electrons minimize lattice thermal conductivity.Energy Environ Sci2013;6:570-8

[22]

Chang C.Anharmoncity and low thermal conductivity in thermoelectrics.Mater Today Phys2018;4:50-7

[23]

Virkar AV.Fabrication of high-thermal-conductivity polycrystalline aluminum nitride: thermodynamic and kinetic aspects of oxygen removal. In: Shindé SL, Goela JS, editors. High thermal conductivity materials. New York: Springer-Verlag; 2006. pp. 143-66.

[24]

Chen S,Yan W.First-principles investigation of elastic anisotropy and thermal transport property of transition metal monosilicides CrSi, TiSi, and ZrSi under pressure.Mater Today Commun2024;39:108958

[25]

Cao Y,Wang X.High-throughput screening of potentially ductile and low thermal conductivity ABX3 (X = S, Se, Te) thermoelectric perovskites.Appl Phys Lett2024;124:092101

[26]

Li R,Xi L,Singh DJ.High-throughput screening for advanced thermoelectric materials: diamond-like ABX2 compounds.ACS Appl Mater Interfaces2019;11:24859-66

[27]

Qin G,Liu Y.High-throughput computational evaluation of lattice thermal conductivity using an optimized Slack model.Mater Adv2022;3:6826-30

[28]

Cao Y,Li X.Unraveling the relationships between chemical bonding and thermoelectric properties: n-type ABO3 perovskites.J Mater Chem A2022;10:11039-45

[29]

Wang X,Zhu G.An interpretable formula for lattice thermal conductivity of crystals.Mater Today Phys2024;48:101549

[30]

Anderson OL.A simplified method for calculating the debye temperature from elastic constants.J Phys Chem Solids1963;24:909-17

[31]

Belomestnykh VN.The acoustical Grüneisen constants of solids.Tech Phys Lett2004;30:91-3

[32]

Ju S,Liu C.Exploring diamondlike lattice thermal conductivity crystals via feature-based transfer learning.Phys Rev Mater2021;5:053801

[33]

Xie T.Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties.Phys Rev Lett2018;120:145301

[34]

Zhu T,Gong S.Charting lattice thermal conductivity for inorganic crystals and discovering rare earth chalcogenides for thermoelectrics.Energy Environ Sci2021;14:3559-66

[35]

Vaitesswar US,Huang T.Machine learning based feature engineering for thermoelectric materials by design.Digit Discov2024;3:210-20

[36]

Omee SS,Dong R,Hu J.Structure-based out-of-distribution (OOD) materials property prediction: a benchmark study.npj Comput Mater2024;10:1316

[37]

Meredig B,Church C.Can machine learning identify the next high-temperature superconductor? Examining extrapolation performance for materials discovery.Mol Syst Des Eng2018;3:819-25

[38]

Merchant A,Schoenholz SS,Cheon G.Scaling deep learning for materials discovery.Nature2023;624:80-5 PMCID:PMC10700131

[39]

Griesemer SD,Wolverton C.Accelerating the prediction of stable materials with machine learning.Nat Comput Sci2023;3:934-45

[40]

Wang X,Zhu G.Role of high-order anharmonicity and off-diagonal terms in thermal conductivity: a case study of multiphase CsPbBr3.Phys Rev B2023;107:214308

[41]

Herring C.Role of low-energy phonons in thermal conduction.Phys Rev1954;95:954-65

[42]

Jia T,Zhang Y.Lattice thermal conductivity evaluated using elastic properties.Phys Rev B2017;95:155206

[43]

Knoop F,Scheffler M.Anharmonicity measure for materials.Phys Rev Mater2020;4:083809

[44]

Belomestnykh VN.Interrelation between anharmonicity and lateral strain in quasi-isotropic polycrystalline solids.Tech Phys2004;49:1098-100

[45]

Chung DH.The Voigt-Reuss-Hill approximation and elastic moduli of polycrystalline MgO, CaF2, β-ZnS, ZnSe, and CdTe.J Appl Phys1967;38:2535-40

[46]

Xiao Y,Pei Y.Origin of low thermal conductivity in SnSe.Phys Rev B2016;94:125203

[47]

Kresse G.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys Rev B Condens Matter1996;54:11169-86

[48]

Blöchl PE.Projector augmented-wave method.Phys Rev B Condens Matter1994;50:17953-79

[49]

Kresse G.From ultrasoft pseudopotentials to the projector augmented-wave method.Phys Rev B1999;59:1758-75

[50]

Perdew JP,Ernzerhof M.Generalized gradient approximation made simple.Phys Rev Lett1996;77:3865-8

[51]

Li W,A .Katcho N, Mingo N. ShengBTE: A solver of the Boltzmann transport equation for phonons.Comput Phys Commun2014;185:1747-58

[52]

Dunn A,Ganose A,Jain A.Benchmarking materials property prediction methods: the Matbench test set and Automatminer reference algorithm.npj Comput Mater2020;6:406

[53]

AFLOW. https://aflowlib.org/. (accessed 2025-02-17)

[54]

Beasley JD.Thermal conductivities of some novel nonlinear optical materials.Appl Opt1994;33:1000-3

[55]

Toberer ES,Snyder GJ.Phonon engineering through crystal chemistry.J Mater Chem2011;21:15843

[56]

Slack GA.Thermal conductivity of MgO, Al2O3, MgAl2O4, and Fe3O4 crystals from 3° to 300° K.Phys Rev1962;126:427-41

[57]

Bjerg L,Madsen GKH.Modeling the thermal conductivities of the zinc antimonides ZnSb and Zn4Sb3.Phys Rev B2014;89:024304

[58]

Toher C,Plata JJ.Combining the AFLOW GIBBS and elastic libraries to efficiently and robustly screen thermomechanical properties of solids.Phys Rev Mater2017;1:015401

[59]

Curtarolo S,Hart GL.AFLOW: an automatic framework for high-throughput materials discovery.Comput Mater Sci2012;58:218-26

[60]

Wang Y,Wang X.Anomalous thermal conductivity in 2D silica nanocages of immobilizing noble gas atom.Appl Phys Lett2024;124:122205

[61]

Zhou F,Xia Y.Lattice anharmonicity and thermal conductivity from compressive sensing of first-principles calculations.Phys Rev Lett2014;113:185501

[62]

Hao Y,Zheng J.Machine learning for predicting ultralow thermal conductivity and high ZT in complex thermoelectric materials.ACS Appl Mater Interfaces2024;16:47866-78

[63]

Zhang Y,Chen C,Kent PRC.Thermodynamic properties of PbTe, PbSe, and PbS: first-principles study.Phys Rev B2009;80:024304

[64]

Zhao LD,Zhang Y.Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals.Nature2014;508:373-7

[65]

Pashinkin AS,Malkova AS.Heat capacity and thermodynamic properties of lead selenide and lead telluride.Inorg Mater2009;45:1226-9

[66]

Tian Z,Esfarjani K,Shiomi J.Phonon conduction in PbSe, PbTe, and PbTe1-xSex from first-principles calculations.Phys Rev B2012;85:184303

[67]

Zhou Z,Liu J.High-throughput prediction of the carrier relaxation time via data-driven descriptor.npj Comput Mater2020;6:417

[68]

Madsen GK.BoltzTraP. A code for calculating band-structure dependent quantities.Comput Phys Commun2006;175:67-71

[69]

Li X,Xi J.TransOpt. A code to solve electrical transport properties of semiconductors in constant electron–phonon coupling approximation.Comput Mater Sci2021;186:110074

[70]

Karamad M,Shi Y,Gates ID.Orbital graph convolutional neural network for material property prediction.Phys Rev Mater2020;4:093801

[71]

Chen C,Zuo Y,Ong SP.Graph networks as a universal machine learning framework for molecules and crystals.Chem Mater2019;31:3564-72

[72]

Cheng J,Dong L.A geometric-information-enhanced crystal graph network for predicting properties of materials.Commun Mater2021;2:194

[73]

Choudhary K.Atomistic line graph neural network for improved materials property predictions.npj Comput Mater2021;7:650

[74]

Louis SY,Nasiri A.Graph convolutional neural networks with global attention for improved materials property prediction.Phys Chem Chem Phys2020;22:18141-8

[75]

Omee SS,Fu N.Scalable deeper graph neural networks for high-performance materials property prediction.Patterns2022;3:100491 PMCID:PMC9122959

[76]

Isayev O,Toher C,Curtarolo S.Universal fragment descriptors for predicting properties of inorganic crystals.Nat Commun2017;8:15679 PMCID:PMC5465371

[77]

Ward L,Krishna A.Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations.Phys Rev B2017;96:024104

[78]

Ruff R,Stühmer J.Connectivity optimized nested line graph networks for crystal structures.Digit Discov2024;3:594-601

AI Summary AI Mindmap
PDF

73

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/