Fast parameter optimization for high-fidelity crystal plasticity simulation using active learning
Meirong Jiang , Xiaobing Hu , Chen Xing , Zhongsheng Yang , Yiming Chen , Junjie Li , Zhijun Wang , Jincheng Wang
Journal of Materials Informatics ›› 2024, Vol. 4 ›› Issue (4) : 22
Fast parameter optimization for high-fidelity crystal plasticity simulation using active learning
Crystal plasticity (CP) simulation is a powerful tool for studying and understanding the mechanical behavior of materials. A critical aspect of this method is the accurate determination of CP parameters, which ensures that the constitutive model accurately represents the real deformation behavior of a material, especially in high-fidelity simulations. However, identifying these parameters poses a significant challenge due to the high computational cost and the difficulty of finding optimal solutions within a vast and complex parameter space. To address these challenges, we propose a fast search strategy that leverages active learning (AL) and experimental data to accelerate the optimization of CP parameters. Using the Al-Cu eutectic materials as a case study, we introduced a quantitative index, Cecp, to measure the consistency between simulated and experimental stress-strain curves. We demonstrated that Gaussian process regression (GPR) serves as the most appropriate surrogate model for relating CP parameters and Cecp based on our dataset. After only six iterations guided by AL, the optimal CP parameters were successfully identified, resulting in a high-fidelity CP model for analyzing the mechanical behavior of Al-Cu eutectic materials. The machine learning-enhanced strategy is far superior to traditional methods in terms of both efficiency and accuracy. It advances our understanding of the macro-micro relationships of materials and accelerates the material design process.
Parameter optimization / crystal plasticity simulation / active learning / stress-strain curve
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
/
| 〈 |
|
〉 |