Fast parameter optimization for high-fidelity crystal plasticity simulation using active learning

Meirong Jiang , Xiaobing Hu , Chen Xing , Zhongsheng Yang , Yiming Chen , Junjie Li , Zhijun Wang , Jincheng Wang

Journal of Materials Informatics ›› 2024, Vol. 4 ›› Issue (4) : 22

PDF
Journal of Materials Informatics ›› 2024, Vol. 4 ›› Issue (4) :22 DOI: 10.20517/jmi.2024.31
Research Article

Fast parameter optimization for high-fidelity crystal plasticity simulation using active learning

Author information +
History +
PDF

Abstract

Crystal plasticity (CP) simulation is a powerful tool for studying and understanding the mechanical behavior of materials. A critical aspect of this method is the accurate determination of CP parameters, which ensures that the constitutive model accurately represents the real deformation behavior of a material, especially in high-fidelity simulations. However, identifying these parameters poses a significant challenge due to the high computational cost and the difficulty of finding optimal solutions within a vast and complex parameter space. To address these challenges, we propose a fast search strategy that leverages active learning (AL) and experimental data to accelerate the optimization of CP parameters. Using the Al-Cu eutectic materials as a case study, we introduced a quantitative index, Cecp, to measure the consistency between simulated and experimental stress-strain curves. We demonstrated that Gaussian process regression (GPR) serves as the most appropriate surrogate model for relating CP parameters and Cecp based on our dataset. After only six iterations guided by AL, the optimal CP parameters were successfully identified, resulting in a high-fidelity CP model for analyzing the mechanical behavior of Al-Cu eutectic materials. The machine learning-enhanced strategy is far superior to traditional methods in terms of both efficiency and accuracy. It advances our understanding of the macro-micro relationships of materials and accelerates the material design process.

Keywords

Parameter optimization / crystal plasticity simulation / active learning / stress-strain curve

Cite this article

Download citation ▾
Meirong Jiang, Xiaobing Hu, Chen Xing, Zhongsheng Yang, Yiming Chen, Junjie Li, Zhijun Wang, Jincheng Wang. Fast parameter optimization for high-fidelity crystal plasticity simulation using active learning. Journal of Materials Informatics, 2024, 4(4): 22 DOI:10.20517/jmi.2024.31

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang L,Wang Y.Understanding the formation of equiaxed α during dynamic precipitation in titanium alloys by elastoplastic phase field simulation.J Mater Res Technol2023;27:8181-96

[2]

Liu G,Wang S,Wang J.Mesoscale crystal plasticity modeling of nanoscale Al–Al2Cu eutectic alloy.Int J Plasticity2019;121:134-52

[3]

Zhang J,Sun X.A multi-scale MCCPFEM framework: modeling of thermal interface grooving and deformation anisotropy of titanium alloy with lamellar colony.Int J Plasticity2020;135:102804

[4]

Zhang H,Sui D,Fu M.Study of microstructural grain and geometric size effects on plastic heterogeneities at grain-level by using crystal plasticity modeling with high-fidelity representative microstructures.Int J Plasticity2018;100:69-89

[5]

Liu P,Xiao Y.Integration of phase-field model and crystal plasticity for the prediction of process-structure-property relation of additively manufactured metallic materials.Int J Plasticity2020;128:102670

[6]

Kotha S,Ghosh S.Parametrically homogenized constitutive models (PHCMs) from micromechanical crystal plasticity FE simulations: Part II: thermo-elasto-plastic model with experimental validation for titanium alloys.Int J Plasticity2019;120:320-39

[7]

Nguyen C,Barbe F,Nguyen D.Identification of crystal plasticity parameters for a non-irradiated and irradiated A508 bainite steel.Metall Res Technol2021;118:204

[8]

Li J,Segurado J.Development of a thermo-mechanically coupled crystal plasticity modeling framework: application to polycrystalline homogenization.Int J Plasticity2019;119:313-30

[9]

Bandyopadhyay R,Sangid MD.Uncertainty quantification in the mechanical response of crystal plasticity simulations.JOM2019;71:2612-24

[10]

Sedighiani K,Traka K,Sietsma J.An efficient and robust approach to determine material parameters of crystal plasticity constitutive laws from macro-scale stress–strain curves.Int J Plasticity2020;134:102779

[11]

Zhang K,Hopperstad O.Multi-level modelling of mechanical anisotropy of commercial pure aluminium plate: crystal plasticity models, advanced yield functions and parameter identification.Int J Plasticity2015;66:3-30

[12]

Tu X,Shen J.Microstructure and property based statistically equivalent RVEs for polycrystalline-polyphase aluminum alloys.Int J Plasticity2019;115:268-92

[13]

Azhari F,Sterjovski Z.Predicting the complete tensile properties of additively manufactured Ti-6Al-4V by integrating three-dimensional microstructure statistics with a crystal plasticity model.Int J Plasticity2022;148:103127

[14]

Guery A,Latourte F.Identification of crystal plasticity parameters using DIC measurements and weighted FEMU.Mech Mater2016;100:55-71

[15]

Chakraborty A.Evaluation of an inverse methodology for estimating constitutive parameters in face-centered cubic materials from single crystal indentations.Eur J Mech A Solid2017;66:114-24

[16]

Cauvin L,Bouvier S,Meraghni F.Multi-scale investigation of highly anisotropic zinc alloys using crystal plasticity and inverse analysis.Mater Sci Eng A2018;729:106-18

[17]

Cao B,Sun A,Zhang T.Domain knowledge-guided interpretive machine learning: formula discovery for the oxidation behavior of ferritic-martensitic steels in supercritical water.J Mater Inf2022;2:4

[18]

Zhang T.New tool in the box.J Mater Inf2021;1:1

[19]

Lu T,Lu W.Recent progress in the data-driven discovery of novel photovoltaic materials.J Mater Inf2022;2:7

[20]

Guo C,Han X.Laser precise synthesis of oxidation-free high-entropy alloy nanoparticle libraries.J Am Chem Soc2024;146:18407-17

[21]

Debnath A,Sun H.Generative deep learning as a tool for inverse design of high entropy refractory alloys.J Mater Inf2021;1:3

[22]

Liu P,Antonov S.Machine learning assisted design of γ’-strengthened Co-base superalloys with multi-performance optimization.npj Comput Mater2020;6:334

[23]

Hu X,Li J,Chen Y.Global-oriented strategy for searching ultrastrength martensitic stainless steels.Adv Theor Simul2022;5:2100411

[24]

Hu X,Lu J.Three-step learning strategy for designing 15Cr ferritic steels with enhanced strength and plasticity at elevated temperature.J Mater Sci Technol2023;164:79-94

[25]

Xue D,Hogden J,Xue D.Accelerated search for materials with targeted properties by adaptive design.Nat Commun2016;7:11241 PMCID:PMC4835535

[26]

Yuan R,Balachandran PV.Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learning.Adv Mater2018;30:1702884

[27]

Hu X,Chen Y,Wang Z.Continually reactivating iterative-projection method for instantiating microstructure from two-point statistics.Acta Mater2022;238:118230

[28]

Jiang M,Li J,Wang J.An interface-oriented data-driven scheme applying into eutectic patterns evolution.Mater Design2022;223:111222

[29]

Hu X,Chen Y.Structure-property modeling scheme based on optimized microstructural information by two-point statistics and principal component analysis.J Mater Inf2022;2:5

[30]

Xue D,Yuan R.An informatics approach to transformation temperatures of NiTi-based shape memory alloys.Acta Mater2017;125:532-41

[31]

Zhang H,Zhu S,Xie J.Machine learning assisted composition effective design for precipitation strengthened copper alloys.Acta Mater2021;215:117118

[32]

Goswami S,Chakraborty S.Transfer learning enhanced physics informed neural network for phase-field modeling of fracture.Theor Appl Fract Mec2020;106:102447

[33]

Samaniego E,Goswami S.An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications.Comput Method Appl M2020;362:112790

[34]

Wei S,Tasan CC.Boundary micro-cracking in metastable Fe45Mn35Co10Cr10 high-entropy alloys.Acta Mater2019;168:76-86

[35]

Ebrahimi M,Li C.Characteristic investigation of trilayered Cu/Al8011/Al1060 composite: interface morphology, microstructure, and in-situ tensile deformation.Prog Nat Sci Mater Int2021;31:679-87

[36]

Yan D,Raabe D.High resolution in situ mapping of microstrain and microstructure evolution reveals damage resistance criteria in dual phase steels.Acta Mater2015;96:399-409

[37]

Lebensohn RA,Eisenlohr P.An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials.Int J Plasticity2012;32-3:59-69

[38]

Lebensohn RA,Castañeda PP.Self-consistent modelling of the mechanical behaviour of viscoplastic polycrystals incorporating intragranular field fluctuations.Philos Mag2007;87:4287-322

[39]

Lebensohn RA,Castelnau O.Orientation image-based micromechanical modelling of subgrain texture evolution in polycrystalline copper.Acta Mater2008;56:3914-26

[40]

Eisenlohr P,Lebensohn R.A spectral method solution to crystal elasto-viscoplasticity at finite strains.Int J Plasticity2013;46:37-53

[41]

Michel JC,Suquet P.A computational method based on augmented lagrangians and fast Fourier transforms for composites with high contrast.Comput Model Eng Sci2000;2:79-88

[42]

James G,Hastie T,Taylor J.Linear regression. An introduction to statistical learning. Cham: Springer International Publishing; 2023. pp. 69-134.

[43]

Cule E.Ridge regression in prediction problems: automatic choice of the ridge parameter.Genet Epidemiol2013;37:704-14 PMCID:PMC4377081

[44]

McDonald GC.Ridge regression.WIREs Comp Stats2009;1:93-100

[45]

Moguerza JM.Support vector machines with applications.Statist Sci2006;21:322-36

[46]

Pisner DA.Chapter 6 - Support vector machine. In: Machine learning. Elsevier; 2020. pp. 101-21.

[47]

Auret L.Interpretation of nonlinear relationships between process variables by use of random forests.Miner Eng2012;35:27-42

[48]

Rigatti SJ.Random forest.J Insur Med2017;47:31-9

[49]

Deringer VL,Bernstein N,Ceriotti M.Gaussian process regression for materials and molecules.Chem Rev2021;121:10073-141 PMCID:PMC8391963

[50]

Schulz E,Krause A.A tutorial on Gaussian process regression: modelling, exploring, and exploiting functions.J Math Psychol2018;85:1-16

[51]

Wang J.An intuitive tutorial to Gaussian process regression.Comput Sci Eng2023;25:4-11

[52]

Jiang M,Yang Z.Crystal plasticity modeling of deformation behavior of Al–Al2Cu eutectics based on high-fidelity representative microstructures.J Mater Res Technol2024;29:5259-70

[53]

Reed R.Aluminium 2. A review of deformation properties of high purity aluminium and dilute aluminium alloys.Cryogenics1972;12:259-91

[54]

Pham HH,Mahaffey P,Arroyave R.Finite-temperature elasticity of fcc Al: atomistic simulations and ultrasonic measurements.Phys Rev B2011;84:064101

[55]

Eshelman FR.Single-crystal elastic constants of Al2Cu.J Appl Phys1978;49:3284-8

[56]

Roters F,Hantcherli L,Bieler T.Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications.Acta Mater2010;58:1152-211

[57]

Segurado J,Llorca J.Multiscale modeling of plasticity based on embedding the viscoplastic self-consistent formulation in implicit finite elements.Int J Plasticity2012;28:124-40

[58]

Balachandran PV,Theiler J,Lookman T.Adaptive strategies for materials design using uncertainties.Sci Rep2016;6:19660 PMCID:PMC4726355

[59]

Simmons G. Single crystal elastic constants and calculated aggregate properties. Southern methodist university press; 1965.

[60]

Mahata A.Effects of solidification defects on nanoscale mechanical properties of rapid directionally solidified Al-Cu Alloy: a large scale molecular dynamics study.J Cryst Growth2019;527:125255

[61]

Davidson CJ,Chadwick GA.Effect of heat treatment and interlamellar spacing on the tensile deformation of the aligned Al CuAl2 eutectic.Acta Metall1980;28:61-73

[62]

Dey BN.Plastic deformation of CuAl2.Phys Stat Sol1972;9:215-21

[63]

Cheng J,Rui J.Enhanced tensile plasticity in ultrafine lamellar eutectic Al-CuBased composites with α-Al dendrites prepared by progressive solidification.Appl Sci2019;9:3922

[64]

Pattnaik A.Deformation and fracture in AI-CuAl2 eutectic composites.Metall Trans1971;2:1529-36

[65]

Zhang X,Guo X,Yu Q.Effects of texture and twinning on the torsional behavior of magnesium alloy solid rod: a crystal plasticity approach in comparison with uniaxial tension/compression.Int J Mech Sci2021;191:106062

[66]

Wang H,Wu W.On the torsional and coupled torsion-tension/compression behavior of magnesium alloy solid rod: a crystal plasticity evaluation.Int J Plasticity2022;151:103213

[67]

Xu Y.A non-local methodology for geometrically necessary dislocations and application to crack tips.Int J Plasticity2021;140:102970

[68]

Yu X,Morales-espejel G,Dini D.On the importance of crystal plasticity finite element discretisation for the identification of crack initiation in RCF using energy-based criteria.Comput Mater Sci2024;232:112651

[69]

Garatti S.A new paradigm for parameter estimation in system modeling.Adapt Control Signal2013;27:667-87

[70]

Sin G,Weijers S.An efficient approach to automate the manual trial and error calibration of activated sludge models.Biotechnol Bioeng2008;100:516-28

[71]

Shahmardani M,Hartmaier A.Robust optimization scheme for inverse method for crystal plasticity model parametrization.Materials2020;13:735 PMCID:PMC7040668

[72]

Depriester D,Barrallier L.Crystal plasticity simulations of in situ tensile tests: a two-step inverse method for identification of CP parameters, and assessment of CPFEM capabilities.Int J Plasticity2023;168:103695

[73]

Tarantola A.Inverse problem theory and methods for model parameter estimation. 2005.

AI Summary AI Mindmap
PDF

77

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/