CGWGAN: crystal generative framework based on Wyckoff generative adversarial network

Tianhao Su , Bin Cao , Shunbo Hu , Musen Li , Tong-Yi Zhang

Journal of Materials Informatics ›› 2024, Vol. 4 ›› Issue (4) : 20

PDF
Journal of Materials Informatics ›› 2024, Vol. 4 ›› Issue (4) :20 DOI: 10.20517/jmi.2024.24
Research Article

CGWGAN: crystal generative framework based on Wyckoff generative adversarial network

Author information +
History +
PDF

Abstract

Discovering novel crystals is a highly effective way to develop new materials, though it presents significant challenges. Recently, many artificial intelligence (AI) generative methods have been developed to generate new crystals. In this work, we present a crystal generative framework based on Wyckoff generative adversarial network (CGWGAN) to efficiently discover novel crystals. The CGWGAN includes three modules: a generator of crystal templates, an atom-infill module, and a crystal screening module. The generator uses a generative adversarial network (GAN) to produce crystal templates embedded with asymmetry units (ASUs), space groups, lattice vectors, and the total number of atoms within the lattice cell, ensuring that the generated templates precisely match all requirements of crystals. These templates become crystal candidates after filling in atoms of different chemical elements. These candidates are screened by M3GNet and the passed ones are subjected to density functional theory (DFT)-based calculations to finally verify their stability. As a showcase, the CGWGAN successfully discovers seven novel crystals within the Ba-Ru-O system, demonstrating its effectiveness. This work provides a knowledge-guided Artificial Intelligence generative framework for accelerating crystal discovery.

Keywords

Crystal discovery / crystal symmetries / generative adversarial / space symmetry

Cite this article

Download citation ▾
Tianhao Su, Bin Cao, Shunbo Hu, Musen Li, Tong-Yi Zhang. CGWGAN: crystal generative framework based on Wyckoff generative adversarial network. Journal of Materials Informatics, 2024, 4(4): 20 DOI:10.20517/jmi.2024.24

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Togo A,Tanaka I. Spglib: a software library for crystal symmetry search. arXiv. [Preprint.] Mar 13, 2024 [accessed on 2024 Nov 4]. Available from: https://doi.org/10.48550/arXiv.1808.01590.

[2]

Pidcock E,Cole JC.A database survey of molecular and crystallographic symmetry.Acta Crystallogr B2003;59:634-40

[3]

Wondratschek H.1.2 Crystallographic symmetry. In: International Tables for Crystallography. 2016.

[4]

Cao B,Sun A,Zhang TY.Domain knowledge-guided interpretive machine learning: formula discovery for the oxidation behavior of ferritic-martensitic steels in supercritical water.J Mater Inf2022;2:4

[5]

Curtarolo S,Wang S.AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations.Comput Mater Sci2012;58:227-35

[6]

Glass CW,Hansen N.USPEX - Evolutionary crystal structure prediction.Comput Phys Commun2006;175:713-20

[7]

Wang Y,Zhu L.CALYPSO: a method for crystal structure prediction.Comput Phys Commun2012;183:2063-70

[8]

Shao X,Liu P.A symmetry-orientated divide-and-conquer method for crystal structure prediction.J Chem Phys2022;156:014105

[9]

Ryan K,Shatruk M.Crystal structure prediction via deep learning.J Am Chem Soc2018;140:10158-68

[10]

Zhao Y,Wu Z.Physics guided deep learning for generative design of crystal materials with symmetry constraints.npj Comput Mater2023;9:38

[11]

Xie T,Ganea OE,Jaakkola T. Crystal diffusion variational autoencoder for periodic material generation. arXiv. [Preprint.] Mar 14, 2022 [accessed on 2024 Nov 4]. Available from: https://doi.org/10.48550/arXiv.2110.06197.

[12]

Batzner S,Sun L.E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials.Nat Commun2022;13:2453 PMCID:PMC9068614

[13]

Zhu R,Yamazaki S.WyCryst: Wyckoff inorganic crystal generator framework.Mater2024;7:3469-88

[14]

Chen C,Zuo Y,Ong SP.Graph networks as a universal machine learning framework for molecules and crystals.Chem Mater2019;31:3564-72

[15]

Chen C.A universal graph deep learning interatomic potential for the periodic table.Nat Comput Sci2022;2:718-28

[16]

Merchant A,Schoenholz SS,Cheon G.Scaling deep learning for materials discovery.Nature2023;624:80-5 PMCID:PMC10700131

[17]

Sitapure N.CrystalGPT: enhancing system-to-system transferability in crystallization prediction and control using time-series-transformers.Comput Chem Eng2023;177:108339

[18]

Vriza A,Widdowson D,Wood PA.Molecular set transformer: attending to the co-crystals in the Cambridge structural database.Dig Discov2022;1:834-50

[19]

Arjovsky M,Bottou L. Wasserstein GAN. arXiv. [Preprint.] Dec 6, 2017 [accessed on 2024 Nov 4]. Available from: https://doi.org/10.48550/arXiv.1701.07875.

[20]

Goodfellow IJ,Mirza M. Generative adversarial networks. arXiv. [Preprint.] Jun 10, 2014 [accessed on 2024 Nov 4]. Available from: https://doi.org/10.48550/arXiv.1406.2661.

[21]

Gulrajani I,Arjovsky M,Courville A. Improved training of Wasserstein GANs. arXiv. [Preprint.] Dec 25, 2017 [accessed on 2024 Nov 4]. Available from: https://doi.org/10.48550/arXiv.1704.00028.

[22]

Vaswani A,Parmar N. Attention is all you need. arXiv. [Preprint.] Aug 2, 2023 [accessed on 2024 Nov 4]. Available from: https://doi.org/10.48550/arXiv.1706.03762.

[23]

Perdew JP,Ernzerhof M.Generalized gradient approximation made simple.Phys Rev Lett1996;77:3865-8

[24]

Togo A.First-principles Phonon Calculations with Phonopy and Phono3py.J Phys Soc Jpn2023;92:012001

[25]

Bohr N. On the constitution of atoms and molecules. 1913. Available from: https://www.nba-old.nbi.dk/pdffiles/trilogypart3.pdf. [Last accessed on 4 Nov 2024]

[26]

Fredericks S,Sayre D.PyXtal: a Python library for crystal structure generation and symmetry analysis.Comput Phys Commun2021;261:107810

[27]

Steed KM.Packing problems: high Z’ crystal structures and their relationship to cocrystals, inclusion compounds, and polymorphism.Chem Rev2015;115:2895-933

[28]

Mouhat F.Necessary and sufficient elastic stability conditions in various crystal systems.Phys Rev B2014;90:224104

[29]

Ong SP,Jain A.Python materials genomics (pymatgen): a robust, open-source python library for materials analysis.Comput Mater Sci2013;68:314-9

[30]

Togo A.First principles phonon calculations in materials science.Scr Mater2015;108:1-5

[31]

Momma K.VESTA: a three-dimensional visualization system for electronic and structural analysis.J Appl Crystallogr2008;41:653-8

[32]

Cao B. Whole pattern fitting of powder X-ray diffraction by expectation maximum algorithm. 2024. Available from: https://figshare.com/articles/code/Whole_Pattern_fitting_of_powder_X-ray_diffraction_by_Expectation_Maximum_algorithm/25060175?file=44225531. [Last accessed on 4 Nov 2024]

[33]

Hesse W,Schnick W.Recent results in solid state chemistry of ionic ozonides, hyperoxides, and peroxides.Prog Solid State Ch1989;19:47-110

[34]

Hayyan M,AlNashef IM.Superoxide ion: generation and chemical implications.Chem Rev2016;116:3029-85

[35]

Henkelman G,Jónsson H.A fast and robust algorithm for Bader decomposition of charge density.Comput Mater Sci2006;36:354-60

[36]

Sanville E,Smith R.Improved grid-based algorithm for Bader charge allocation.J Comput Chem2007;28:899-908

[37]

Cao B,Zheng Z,Li J. SimXRD-4M: big simulated X-ray diffraction data accelerate the crystalline symmetry classification. arXiv. [Preprint.] Jun 15, 2024 [accessed on 2024 Nov 4]. Available from: https://doi.org/10.48550/arXiv.2406.15469.

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/