Thermal stability prediction of copolymerized polyimides via an interpretable transfer learning model

Yu Zhang , Yating Fang , Ling Li , Tongle Xu , Fang Peng , Xiong Li , Guangrui Xu , Wei Lv , Minjie Li , Peng Ding

Journal of Materials Informatics ›› 2024, Vol. 4 ›› Issue (2) : 8

PDF
Journal of Materials Informatics ›› 2024, Vol. 4 ›› Issue (2) :8 DOI: 10.20517/jmi.2024.13
Research Article

Thermal stability prediction of copolymerized polyimides via an interpretable transfer learning model

Author information +
History +
PDF

Abstract

To address the issues with molecular representation of copolymerized polyimides (PIs) and the mini dataset of PI powders. We constructed an interpretable machine learning (ML) model for PI films using the weighted-additive Morgan Fingerprints with Frequency descriptors and developed an interpretable transfer learning model for PI powders. To enhance Thermal Stability (Temperature at 5% weight loss) of PI films and powders, it is recommended to add conjugated functional groups to diamines, control phenyl ring side chains, and reduce pyridine and hydroxyl groups; select copolyimides (co-PIs); ensure that anhydride is directly connected to the benzene ring in dianhydrides, avoiding aliphatic cycles. It is noteworthy that the close alignment between experimental results and model predictions serves to confirm the model is a reliable prediction tool. It is hoped that this polymer informatics approach will provide further implementation for practical applications of other functional materials.

Keywords

Transfer learning models / copolymerized polyimides / thermal stability

Cite this article

Download citation ▾
Yu Zhang, Yating Fang, Ling Li, Tongle Xu, Fang Peng, Xiong Li, Guangrui Xu, Wei Lv, Minjie Li, Peng Ding. Thermal stability prediction of copolymerized polyimides via an interpretable transfer learning model. Journal of Materials Informatics, 2024, 4(2): 8 DOI:10.20517/jmi.2024.13

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yaghi OM,Ockwig NW,Eddaoudi M.Reticular synthesis and the design of new materials.Nature2003;423:705-14

[2]

Bubeck S,Eldan R. Sparks of artificial general intelligence: early experiments with GPT-4. ArXiv. [Preprint] Apr 13, 2023. [accessed on 2024 Jun 14]. Available from: https://doi.org/10.48550/arXiv.2303.12712.

[3]

Li Y,Han Y.Local environment interaction-based machine learning framework for predicting molecular adsorption energy.J Mater Inf2024;4:4

[4]

Yang Y,Zong H.Physics infused machine learning force fields for 2D materials monolayers.J Mater Inf2023;3:23

[5]

Wang Y,France-lanord A.Toward designing highly conductive polymer electrolytes by machine learning assisted coarse-grained molecular dynamics.Chem Mater2020;32:4144-51

[6]

Xie T,Wang Y.Accelerating amorphous polymer electrolyte screening by learning to reduce errors in molecular dynamics simulated properties.Nat Commun2022;13:3415 PMCID:PMC9197847

[7]

Luo H,Liu L.Core–shell nanostructure design in polymer nanocomposite capacitors for energy storage applications.ACS Sustain Chem Eng2019;7:3145-53

[8]

Hu H,Luo S,Yue J.Recent advances in rational design of polymer nanocomposite dielectrics for energy storage.Nano Energy2020;74:104844

[9]

St John PC,Kemper TW.Message-passing neural networks for high-throughput polymer screening.J Chem Phys2019;150:234111

[10]

Munshi J,Chien T.Transfer learned designer polymers for organic solar cells.J Chem Inf Model2021;61:134-42

[11]

Bai Y,Slater BJ,Sprick RS.Accelerated discovery of organic polymer photocatalysts for hydrogen evolution from water through the integration of experiment and theory.J Am Chem Soc2019;141:9063-71 PMCID:PMC7007211

[12]

Liang J,Hu L,Zhu X.Machine-learning-assisted low dielectric constant polymer discovery.Mater Chem Front2021;5:3823-9

[13]

Rajendran S,Kanakaraj A.Metal and polymer based composites manufactured using additive manufacturing - a brief review.Polymers2023;15:2564 PMCID:PMC10255547

[14]

Oladele IO,Adediran AA.Polymer-based composites: an indispensable material for present and future applications.Int J Polym Sci2020;2020:8834518

[15]

Wang L,Wang X.Advances in polymers and composite dielectrics for thermal transport and high-temperature applications.Compos Part A Appl S2023;164:107320

[16]

Jayalath S,Epaarachchi J,Gdoutos EE.Durability and long-term behaviour of shape memory polymers and composites for the space industry - a review of current status and future perspectives.Polym Degrad Stabil2023;211:110297

[17]

Gouzman I,Verker R,Bolker A.Advances in polyimide-based materials for space applications.Adv Mater2019;31:e1807738

[18]

Ding M.Isomeric polyimides.Prog Polym Sci2007;32:623-68

[19]

Liaw D,Huang Y,Lai J.Advanced polyimide materials: syntheses, physical properties and applications.Prog Polym Sci2012;37:907-74

[20]

Li Y,Zhou Y,Wang J.Progress in low dielectric polyimide film - a review.Prog Org Coat2022;172:107103

[21]

Song N,Ma T.Decreasing the dielectric constant and water uptake by introducing hydrophobic cross-linked networks into co-polyimide films.Appl Surf Sci2019;480:990-7

[22]

Song N,Yu H.Decreasing the dielectric constant and water uptake of co-polyimide films by introducing hydrophobic cross-linked networks.Eur Polym J2018;101:105-12

[23]

Liu TQ,Ma X.High heat-resistant polyimide films containing quinoxaline moiety for flexible substrate applications.Polymer2020;209:122963

[24]

Liu B,Dong L,Xu X.Enhanced thermal conductivity in copolymerized polyimide.iScience2022;25:105451 PMCID:PMC9663882

[25]

Lian R,Xiao Y.Synthesis and properties of colorless copolyimides derived from 4,4’-diaminodiphenyl ether-based diamines with different substituents.Polym Chem2021;12:4803-11

[26]

Jiao L,Dai X,Yao H.Multifunctional polyimide films with superheat-resistance, low coefficient of thermal expansion and fluorescence performance.Polymer2022;247:124792

[27]

Hicyilmaz A, Celik Bedeloglu A. Applications of polyimide coatings: a review.SN Appl Sci2021;3:363

[28]

Takekoshi T.Polyimides. In: Kirk-othmer encyclopedia of chemical technology. 2000.

[29]

Tao L,Munyaneza NE.Discovery of multi-functional polyimides through high-throughput screening using explainable machine learning.Chem Eng J2023;465:142949

[30]

Batra R,Ramprasad R.Emerging materials intelligence ecosystems propelled by machine learning.Nat Rev Mater2021;6:655-78

[31]

Chen L,Batra R.Polymer informatics: current status and critical next steps.Mat Sci Eng R2021;144:100595

[32]

Kuenneth C.polyBERT: a chemical language model to enable fully machine-driven ultrafast polymer informatics.Nat Commun2023;14:4099 PMCID:PMC10336012

[33]

Chen G,Iyer A.Machine-learning-assisted de novo design of organic molecules and polymers: opportunities and challenges.Polymers2020;12:163 PMCID:PMC7023065

[34]

Choi J,Yang S.The glass transition and thermoelastic behavior of epoxy-based nanocomposites: a molecular dynamics study.Polymer2011;52:5197-203

[35]

Huang X.Tutorial: AI-assisted exploration and active design of polymers with high intrinsic thermal conductivity.J Appl Phys2024;135:171101

[36]

Tao L,Li Y.Machine learning discovery of high-temperature polymers.Patterns2021;2:100225 PMCID:PMC8085602

[37]

Uddin MJ.Interpretable machine learning framework to predict the glass transition temperature of polymers.Polymers2024;16:1049 PMCID:PMC11054142

[38]

Katritzky AR,Slavov S.Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction.Chem Rev2010;110:5714-89

[39]

Mannodi-kanakkithodi A,Kim C.Scoping the polymer genome: a roadmap for rational polymer dielectrics design and beyond.Mater Today2018;21:785-96

[40]

Volgin IV,Matseevich AV.Machine learning with enormous “synthetic” data sets: predicting glass transition temperature of polyimides using graph convolutional neural networks.ACS Omega2022;7:43678-91 PMCID:PMC9730753

[41]

Zhang S,Xia X.Machine-learning-enabled framework in engineering plastics discovery: a case study of designing polyimides with desired glass-transition temperature.ACS Appl Mater Interfaces2023;15:37893-902

[42]

Huang X,Zhao CY,Ju S.Exploring high thermal conductivity polymers via interpretable machine learning with physical descriptors.npj Comput Mater2023;9:191

[43]

Honda S,Ueda HR. SMILES Transformer: Pre-trained molecular fingerprint for low data drug discovery. ArXiv. [Preprint] Nov 12, 2019. [accessed on 2024 Jun 14]. Available from: https://arxiv.org/abs/1911.04738.

[44]

Ying C,Luo S. Do transformers really perform bad for graph representation? ArXiv. [Preprint] Nov 24, 2021. [accessed on 2024 Jun 14]. Available from: https://arxiv.org/abs/2106.05234.

[45]

Irwin R,He J.Chemformer: a pre-trained transformer for computational chemistry.Mach Learn Sci Technol2022;3:015022

[46]

Barredo Arrieta A,Del Ser J.Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI.Inform Fusion2020;58:82-115

[47]

Wen C,Zhang Y.Modeling solid solution strengthening in high entropy alloys using machine learning.Acta Mater2021;212:116917

[48]

Zhang S,Wang L.Design of silicon-containing arylacetylene resins aided by machine learning enhanced materials genome approach.Chem Eng J2022;448:137643

[49]

Xu C,Barati Farimani A.TransPolymer: a transformer-based language model for polymer property predictions.npj Comput Mater2023;9:64

[50]

Vermeire FH.Transfer learning for solvation free energies: from quantum chemistry to experiments.Chem Eng J2021;418:129307

[51]

Panapitiya G,Hollas A.Evaluation of deep learning architectures for aqueous solubility prediction.ACS Omega2022;7:15695-710 PMCID:PMC9096921

[52]

Zhang D,Zhang Y.Accurate prediction of aqueous free solvation energies using 3D atomic feature-based graph neural network with transfer learning.J Chem Inf Model2022;62:1840-8 PMCID:PMC9038704

[53]

Chen C,Zuo Y,Ong SP.Graph networks as a universal machine learning framework for molecules and crystals.Chem Mater2019;31:3564-72

[54]

Wu S,Kakimoto M.Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm.npj Comput Mater2019;5:66

[55]

Qiao W. Synthesis and properties of polyimides derived from m-xylylenediamine monomer. Fine Chem 2022;39:1141-7. (in Chinese) Available from: http://www.finechemicals.com.cn/jxhg/article/abstract/202111181175?st=search. [Last accessed on 14 Jun 2024]

[56]

Yang Z,Guo H.Synthesis and properties of polyimide films for flexible OLED displays.Acta Polym Sin2021;52:1308-15

[57]

Wang T,Chen F.Synthesis and characterization of polyimides based on twisted non-coplanar backbone containing indolocarbazole.Chin J Struc Chem2021;40:1611-20

[58]

Luo JR,Liu H.Synthesis and characterization of polyimides with naphthalene ring structure introduced in the main chain.Materials2022;15:8014 PMCID:PMC9699469

[59]

Li Q,Liao G,Xu Z.Novel fluorinated hyperbranched polyimides with excellent thermal stability, UV-shielding property, organosolubility, and low dielectric constants.High Perform Polym2018;30:872-86

[60]

Liu Z,Li X,Liu B.Synthesis and properties of the novel polyimides containing cyano and biphenyl moieties.High Perform Polym2018;30:1183-92

[61]

Yu B,Wang C. Synthesis and characterization of highly transparent fluorinated copolymer polyimide. Fine Chem 2019;36. (in Chinese) Available from: http://www.finechemicals.com.cn/jxhg/article/abstract/201904030272?st=search. [Last accessed on 14 Jun 2024]

[62]

Liu Y,Sheng S,Hou H.Synthesis and properties of super-high temperature diketone anhydride polyimides.Chin J Appl Chem2019;36:658-63

[63]

Cui X.Synthesis and characterization of high performance thermoplastic polyimide used the anti-riot bomb. In: International Conference on Electronical, Mechanical and Materials Engineering (ICE2ME); Wuhan, China; 2019. pp. 207-10.

[64]

Abdulhamid MA,Ghanem BS.Synthesis and characterization of organo-soluble polyimides derived from alicyclic dianhydrides and a dihydroxyl-functionalized spirobisindane diamine.ACS Appl Polym Mater2019;1:63-9

[65]

Zhang H,Chen G,Fang X.Melt-processable semicrystalline polyimides based on 1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride (HQDPA): synthesis, crystallization, and melting behavior.Polymers2017;9:420 PMCID:PMC6418867

[66]

Liu Y,Tan J.Synthesis and characterization of intrinsic high-barrier polyimide derived from a novel diamine monomer containing rigid planar moiety.J Polym Sci Part A Polym Chem2017;55:2373-82

[67]

Wang C,Tian D,Chen C.Synthesis and characterization of novel polyimides derived from 4,4’-bis(5-amino-2-pyridinoxy)benzophenone: effect of pyridine and ketone units in the main.Des Monomers Polym2017;20:97-105 PMCID:PMC5812177

[68]

Wu F,Yu X.Synthesis and characterization of novel star-branched polyimides derived from 2,2-bis[4-(2,4-diaminophenoxy)phenyl]hexafluoropropane.RSC Adv2017;7:35786-94

[69]

Lei Y,Peng J,Huo J.Synthesis and properties of low coefficient of thermal expansion copolyimides derived from biphenyltetracarboxylic dianhydride with p-phenylenediamine and 4,4’-oxydialinine.e Polymers2016;16:295-302

[70]

Huang X,Wang L,Liu C.Design and synthesis of organosoluble and transparent polyimides containing bulky substituents and noncoplanar structures.J Appl Polym Sci2016;133:app.43266

[71]

Li B,Zhang T.Synthesis and properties of novel colorless and thermostable polyimides containing cross-linkable bulky tetrafluorostyrol pendant group and organosoluble triphenylmethane backbone structure.J Polym Sci2020;58:2355-65

[72]

Yuan C,Wang Y.Synthesis and characterization of a novel organo-soluble polyimide containing hydroxyl and bis-tert-butyl substituted triphenylpyridine units.J Polym Res2020;27:220

[73]

Mirsamiei A.Synthesis and properties of polyimides derived from bis-(Aminophenoxy) containing naphthalene, [Phenyl] propane and [Methyl] cyclohexane segment and 4, 4’-carbonyldiphthalic anhydride.J Macromol Sci A2018;55:519-25

[74]

Wang Z,Han S,Cheng Y.Polyimides from an asymmetric hydroxyl-containing aliphatic-aromatic diamine synthesized via henry reaction.J Polym Sci Part A Polym Chem2017;55:3413-23

[75]

Zhao H,Zhou Y,Fang X.Synthesis and characterization of organosoluble and transparent polyimides derived from trans-1,2-bis(3,4-dicarboxyphenoxy)cyclohexane dianhydride.J Appl Polym Sci2015;132:app.42317

[76]

Liu C,Pei X,Wei C.Aromatic polyimides with tertbutyl-substituted and pendent naphthalene units: synthesis and soluble, transparent properties.Chin J Polym Sci2015;33:1074-85

[77]

Li Q,Pang L.Synthesis and characterization of thermally stable, hydrophobic hyperbranched polyimides derived from a novel triamine.High Perform Polym2015;27:426-38

[78]

Chen Y.Synthesis, characterization and properties of aromatic copolyimides containing Bi-benzimidazole moiety.J Polym Res2015;22:78

[79]

Guan Y,Wang D.High transparent polyimides containing pyridine and biphenyl units: synthesis, thermal, mechanical, crystal and optical properties.Polymer2015;62:1-10

[80]

Wang Y,Yu Z,Zhang X.Novel dye-containing copolyimides: synthesis, characterization and effect of chain entanglements on developed electrospun nanofiber morphologies.J Polym Res2015;22:65

[81]

Tapaswi PK,Nagappan S.Synthesis and characterization of highly transparent and hydrophobic fluorinated polyimides derived from perfluorodecylthio substituted diamine monomers.J Polym Sci Part A Polym Chem2015;53:479-88

[82]

Aguilar-lugo C,Loría-bastarrachea MI,Alexandrova L.Synthesis, characterization, and structure-property relationships of aromatic polyimides containing 4,4’-diaminotriphenylmethane.J Polym Res2016;23:49

[83]

Kumar A,Yasaki K.Ultrahigh performance bio-based polyimides from 4,4’-diaminostilbene.Polymer2016;83:182-9

[84]

Liu S,Wang X,Song N.Synthesis and properties of hyperbranched polyimides derived from tetra-amine and long-chain aromatic dianhydrides.RSC Adv2015;5:107793-803

[85]

Yang G,Huang H,Wang L.Synthesis of novel biobased polyimides derived from isomannide with good optical transparency, solubility and thermal stability.RSC Adv2015;5:67574-82

[86]

Zhou Y,Zhao H,Fang X.Synthesis and properties of transparent polyimides derived from trans-1,4-bis(2,3-dicarboxyphenoxy)cyclohexane dianhydride.RSC Adv2015;5:53926-34

[87]

Wang Y.Synthesis and characterization of novel polyimides derived from 2,4-bis(4-aminophenoxy)pyrimidine.High Perform Polym2014;26:978-85

[88]

Tapaswi PK,Jung YS,Seo DJ.Synthesis and characterization of fully aliphatic polyimides from an aliphatic dianhydride with piperazine spacer for enhanced solubility, transparency, and low dielectric constant.J Polym Sci Part A Polym Chem2014;52:2316-28

[89]

Li Y,Jiao L,Zhao X.Synthesis of new autophotosensitive semiaromatic hyperbranched polyimides with excellent mechanical properties and low birefringences.High Perform Polym2014;26:569-77

[90]

Guan Y,Song G.Synthesis and characterization of novel polyimides derived from 3,6-bis(4-aminophenoxy)pyridazine.High Perform Polym2014;26:455-62

[91]

Cao X,Matsumoto T.Synthesis and properties of cyano group-containing polyimides with high peel strength.High Perform Polym2016;28:953-61

[92]

Chen Y.Synthesis and properties of polyimides derived from diamine monomer containing bi-benzimidazole unit.J Polym Res2014;21:424

[93]

Yao H,Liu Y.Synthesis and properties of cross-linkable high molecular weight fluorinated copolyimides.J Polym Sci Part A Polym Chem2014;52:349-59

[94]

Chen Y,Sun W,Yao P.Synthesis and gas permeation properties of hyperbranched polyimides membranes from a novel (A2+B2B’+B2)-type method.J Membr Sci2014;450:138-46

[95]

Guan Y,Wang Z.Synthesis and characterization of novel polyimides from 4,4’-bis(5-amino-2-pyridinoxy)diphenyl ether, 4,4’-bis(5-amino-2-pyridinoxy)diphenyl thioether and 4,4’-bis(5-amino-2-pyridinoxy)diphenyl sulfone.RSC Adv2014;4:50163-70

[96]

Liu C,Mei M,Huang X.Synthesis and characterization of organosoluble, transparent, and hydrophobic fluorinated polyimides derived from 3,3’-diisopropyl-4,4’-diaminodiphenyl-4’’-trifluoromethyltoluene.High Perform Polym2016;28:1114-23

[97]

Ding M. Polyimides: chemistry, structure-property relationships and materials. 2nd editon. 2012. (in Chinese) Available from: https://www.ecsponline.com/yz/B405754A7A8064FF096F194B3B878E2BD000.pdf. [Last accessed on 14 Jun 2024]

[98]

Huang X,Wang H.AI-assisted inverse design of sequence-ordered high intrinsic thermal conductivity polymers.Mater Today Phys2024;44:101438

[99]

Persson P,Lunell S.Quantum chemical study of photoinjection processes in dye-sensitized TiO2 nanoparticles.J Phys Chem B2000;104:10348-51

[100]

Nakajima T.Discovery of Pb-free perovskite solar cells via high-throughput simulation on the K computer.J Phys Chem Lett2017;8:4826-31

[101]

Zhang Y,Chen F,Ding P.Accelerating the discovery of N-annulated perylene organic sensitizers via an interpretable machine learning model.J Mol Struc2024;1296:136855

[102]

Butler KT,Cartwright H,Walsh A.Machine learning for molecular and materials science.Nature2018;559:547-55

[103]

Chen Y,Min Y.Synthesis and properties comparison of low dielectric silicon containing polyimides.Materials2022;15:2755

[104]

Zhang W,Lu Y.Molecular dynamics simulation on the heat transfer in the cross-linked poly(dimethylsiloxane).J Phys Chem B2023;127:10243-51

[105]

Le NL,Chung T.Synthesis, cross-linking modifications of 6FDA-NDA/DABA polyimide membranes for ethanol dehydration via pervaporation.J Membr Sci2012;415-6:109-21

[106]

Guan Y,Song G.Novel soluble polyimides derived from 2,2’-bis[4-(5-amino-2-pyridinoxy)phenyl]hexafluoropropane: preparation, characterization, and optical, dielectric properties.Polymer2014;55:3634-41

AI Summary AI Mindmap
PDF

77

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/