Effect of material properties on the thermal responses of the carbonization and pyrolysis layers of polymer matrix composites for charring-ablators

Yongxiang Li , Xiao Liu , Xiangdong Wang , Wei Xie , Di Qiu , Jiong Yang

Journal of Materials Informatics ›› 2025, Vol. 5 ›› Issue (3) : 31

PDF
Journal of Materials Informatics ›› 2025, Vol. 5 ›› Issue (3) :31 DOI: 10.20517/jmi.2024.104
Research Article

Effect of material properties on the thermal responses of the carbonization and pyrolysis layers of polymer matrix composites for charring-ablators

Author information +
History +
PDF

Abstract

Ablative materials, a special type of thermal protection material, are widely used in extremely high-temperature environments such as hypersonic vehicles and re-entry capsules. They effectively mitigate heat conduction to the interior through ablation at the material surface. Based on traditional physical models and machine learning techniques, we systematically investigated the mapping relationship between multiple material parameters and thermal responses within the carbonized layer and pyrolysis layer of ablative materials. By employing high-throughput physical modeling and the sure independence screening and sparsity operator (SISSO) method for feature selection, we first revealed that the thermal responses of different layers are dominated by distinct material properties (e.g., density, thermal conductivity, heat capacity, etc.). The explicit relationships between the functioning material parameters and the features of the thermal response curves associated with single-/double-layer structures are well established. After the key parameter screening based on SISSO, we further developed a deep neural network surrogate model, capable of accurately predicting the entire thermal response process within the carbonized and pyrolysis layers.

Keywords

Thermal response / ablation / data-driven / symbolic regression / deep neural network

Cite this article

Download citation ▾
Yongxiang Li, Xiao Liu, Xiangdong Wang, Wei Xie, Di Qiu, Jiong Yang. Effect of material properties on the thermal responses of the carbonization and pyrolysis layers of polymer matrix composites for charring-ablators. Journal of Materials Informatics, 2025, 5(3): 31 DOI:10.20517/jmi.2024.104

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Soni R,Kumar Garg R.Progress in aerospace materials and ablation resistant coatings: a focused review.Opt Laser Technol2024;177:111160

[2]

Guo M,Yang J,Zhang Y.B2O3-reinforced ablative materials with superior and comprehensive ablation resistance used in aerospace propulsion thermal protection systems.Polym Degrad Stab2024;223:110740

[3]

Kumar A,Kumar K,Babu BS.State-of-the-art on advancements in carbon-phenolic and carbon-elastomeric ablatives.Polymers2024;16:1461 PMCID:PMC11175140

[4]

Xu W,Jia X.Nano-silica modified lightweight and high-toughness carbon fiber/phenolic ablator with excellent thermal insulation and ablation performance.Def Technol2024;31:192-9

[5]

Xia C,Meng S,Ye J.Preparation of integrated carbon fiber stitched fabric reinforced (SiBCN) ceramic/resin double-layered composites for ablation resistance, thermal insulation and compression resistance performance.Compos Sci Technol2024;252:110629

[6]

Vekariya N,Patel R.Microstructural investigation and performance of carbon matrix composites developed through facile pitch modification route.Diam Relat Mater2024;145:111056

[7]

Agarwal N,Bhavsar K.An overview of carbon-carbon composite materials and their applications.Front Mater2024;11:1374034

[8]

Moyer CB. Aerotherm charring material thermal response and ablation program, version 3. volume 1. Program description and sample problems. 1970. https://archive.org/details/DTIC_AD0875062. (accessed 11 Apr 2025)

[9]

Chen, Y. K.; Milos, F. Three-dimensional ablation and thermal response simulation system. In Proceedings of the 38th AIAA thermophysics conference, Toronto, Canada. Jun 06-09, 2005. 2012; pp. 5064.

[10]

Chen, Y. K.; Milos, F. Multidimensional effects on heatshield thermal response for the Orion crew module. In Proceedings of the 39th AIAA Thermophysics Conference, Miami, USA. Jun 25-28, 2007. 2012; pp. 4397.

[11]

Chen YK,Gokcen T.Validation of a three-dimensional ablation and thermal response simulation code. In Proceedings of the 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, Chicago, USA. Jun 28 - Jul 01, 2010. 2012; pp. 4645.

[12]

Dec JA. Three dimensional finite element ablative thermal response analysis applied to heatshield penetration design. 2010. https://www.proquest.com/openview/6f7df22a64ad48ff6a7b07b10532fcb4/1?cbl=18750&pq-origsite=gscholar. (accessed 11 Apr 2025)

[13]

Dec J,Braun R.Two-dimensional finite element ablative thermal response analysis of arcjet stagnation tests. In Proceedings of the 42nd AIAA Thermophysics Conference, Honolulu, USA. Jun 27-30, 2011. 2012; pp. 3617.

[14]

Kavimani V,Thankachan T.5 - Evolution and recent advancements of composite materials in thermal applications. In: Applications of Composite Materials in Engineering. Elsevier; 2025. pp. 119-38.

[15]

Meicong W,Jixiang S.Effect of phenolic resin pyrolysis on thermal properties of SiFRP composites under high heating rates.J Phys Conf Ser2024;2891:112023

[16]

Song J.Effect of an interface layer on thermal conductivity of polymer composites studied by the design of double-layered and triple-layered composites.Int J Heat Mass Transfer2019;141:1049-55

[17]

Xu Y,Zhang L.Investigation on the effective thermal conductivity of carbonized high silica/phenolic ablative material.Int J Heat Mass Transfer2017;115:597-603

[18]

Alotaibi H. Numerical modelling of manufacturing of graphene-modified hybrid composites for structural applications. 2023. https://www.proquest.com/openview/20298841422af4144c4020fb69aa34df/1?cbl=2026366&diss=y&pq-origsite=gscholar. (accessed 11 Apr 2025)

[19]

Kumar CV.Advances in ablative composites of carbon based materials: a review.Ind Eng Chem Res2019;58:22663-701

[20]

Guo N,Wang J,Gao J.Utilizing a multi-layer structure to regulate the thermal conductivity of an advanced BN + EP composite insulation material: effects of content, number of layers, and curing temperature on composites.Polym Compos2024;45:3536-50

[21]

Manocha LM.High performance carbon-carbon composites.Sadhana2003;28:349-58

[22]

Reis LMM,Chaves YS.Thermal and ballistic characterization of epoxy matrix composites reinforced with babassu (Attalea speciosa) fiber: an experimental investigation.J Mater Res Technol2025;35:2176-87

[23]

Chen L,Xie H.Thermal properties of epoxy resin based thermal interfacial materials by filling Ag nanoparticle-decorated graphene nanosheets.Compos Sci Technol2016;125:17-21

[24]

Guo L,Guo C,Sun R.Ablation performance of supersonic atmosphere plasma sprayed tungsten coating under oxyacetylene torch and plasma torch.Vacuum2017;143:262-70

[25]

Zha BL,Shi YA,He Q.Study on plasma ablation behavior of C/C composite materials under particle erosion.IOP Conf Ser Mater Sci Eng2018;423:012094

[26]

Yi Z,Yi M.Differences in microstructure and properties of C/C composites brazed with Ag-Cu-Ti and Ni-Cr-P-Ti pasty brazing filler.Vacuum2019;168:108804

[27]

Yuan W,Li L.Heat transfer analysis in multi-layered materials with interfacial thermal resistance.Compos Struct2022;293:115728

[28]

Huang HC.Introduction. In: Finite element analysis for heat transfer. London: Springer; 1994. p. 1-5.

[29]

Bergheau JM.Finite element simulation of heat transfer. John Wiley & Sons: 2013.

[30]

Hu M.Perspective on multi-scale simulation of thermal transport in solids and interfaces.Phys Chem Chem Phys2021;23:1785-801

[31]

Ma T,Guo X,Wang Y.First-principles modeling of thermal transport in materials: achievements, opportunities, and challenges.Int J Thermophys2020;41:2583

[32]

Łach Ł.Advances in numerical modeling for heat transfer and thermal management: a review of computational approaches and environmental impacts.Energies2025;18:1302

[33]

Yao H,Liu Y.FEA-Net: A physics-guided data-driven model for efficient mechanical response prediction.Comput Methods Appl Mech Eng2020;363:112892

[34]

Zhu C,Shen X,Li B.Machine learning aided design and optimization of thermal metamaterials.Chem Rev2024;124:4258-331 PMCID:PMC11009967

[35]

de Pablo JJ,Webb MA.New frontiers for the materials genome initiative.npj Comput Mater2019;5:173

[36]

Pollice R,Aldeghi M.Data-driven strategies for accelerated materials design.Acc Chem Res2021;54:849-60 PMCID:PMC7893702

[37]

Jha D,Paul A.ElemNet: deep learning the chemistry of materials from only elemental composition.Sci Rep2018;8:17593 PMCID:PMC6279928

[38]

Chen Q,Pang S.Deep long short-term memory neural network for accelerated elastoplastic analysis of heterogeneous materials: an integrated data-driven surrogate approach.Compos Struct2021;264:113688

[39]

Sun W,Arca E.A map of the inorganic ternary metal nitrides.Nat Mater2019;18:732-9

[40]

Liu B,Avdeev M,Yang J.High-throughput computational screening of Li-containing fluorides for battery cathode coatings.ACS Sustainable Chem Eng2020;8:948-57

[41]

Hautier G,Chen H,Ong SP.Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations.J Mater Chem2011;21:17147

[42]

Mounet N,Schwaller P.Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds.Nat Nanotechnol2018;13:246-52

[43]

Huang W,Zhuang HL.Machine-learning phase prediction of high-entropy alloys.Acta Mater2019;169:225-36

[44]

Islam N,Zhuang HL.Machine learning for phase selection in multi-principal element alloys.Comput Mater Sci2018;150:230-5

[45]

Shin S,So H.Noncontact thermal mapping method based on local temperature data using deep neural network regression.Int J Heat Mass Transfer2022;183:122236

[46]

Ouyang R,Ahmetcik E,Ghiringhelli LM.SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates.Phys Rev Mater2018;2:083802

[47]

Bartel CJ,Goldsmith BR.New tolerance factor to predict the stability of perovskite oxides and halides.Sci Adv2019;5:eaav0693 PMCID:PMC6368436

[48]

Liu X,Liu W.Numerical simulation research on three dimensional ablative thermal response of charring ablators.J Astronaut2016;37:1150-6. (in Chinese)

[49]

Dewey WC.Arrhenius relationships from the molecule and cell to the clinic.Int J Hyperthermia1994;10:457-83

[50]

Peleg M,Corradini MG.The Arrhenius equation revisited.Crit Rev Food Sci Nutr2012;52:830-51

[51]

Appleton JP.The conservation equations for a non-equilibrium plasma.J Fluid Mech1964;20:659-72

[52]

Wheatcraft SW.Fractional conservation of mass.Adv Water Resources2008;31:1377-81

[53]

Hubbert MK.Darcy’s law and the field equations of the flow of underground fluids.Trans AIME1956;207:222-39

[54]

Wang J,Wang Y.Distilling accurate descriptors from multi-source experimental data for discovering highly active perovskite OER catalysts.J Am Chem Soc2023;145:11457-65

[55]

LeCun Y,Hinton G.Deep learning.Nature2015;521:436-44

[56]

Rusk N.Deep learning.Nat Methods2016;13:35-35

[57]

Minsky M.Perceptrons: an introduction to computational geometry. MIT Press: 2017.

[58]

Nwankpa C,Gachagan A. Activation functions: comparison of trends in practice and research for deep learning. arXiv 2018, arXiv:1811.03378. Available online: https://doi.org/10.48550/arXiv.1811.03378. (accessed 11 Apr 2025)

[59]

Baydin AG,Radul AA. Automatic differentiation in machine learning: a survey. arXiv 2015, arXiv:1502.05767. Available online: https://doi.org/10.48550/arXiv.1502.05767. (accessed 11 Apr 2025)

[60]

Agrawal A.Deep materials informatics: applications of deep learning in materials science.MRS Commun2019;9:779-92

[61]

Permann CJ,Andrš D.MOOSE: enabling massively parallel multiphysics simulation.SoftwareX2020;11:100430

[62]

Zhang C,Chen J,Guo Y.Study on uncertainty propagation analysis method in ablative thermal response calculation.J Astronautics2020;41:1401-9. (in Chinese)

[63]

Tibshirani R.Regression shrinkage and selection via the lasso.J R Stat Soc Ser B1996;58:267-88

[64]

Ranstam J.LASSO regression.Br J Surg2018;105:1348

[65]

Zou H.The adaptive lasso and its oracle properties.J Am Stat Assoc2006;101:1418-29

[66]

Ye S,Li M.Operator-induced structural variable selection for identifying materials genes.J Am Stat Assoc2024;119:81-94 PMCID:PMC11343493

[67]

Sandberg J,Devijver E.Feature selection for high-dimensional neural network potentials with the adaptive group lasso.Mach Learn Sci Technol2024;5:025043

[68]

Wang P,Zhou C.Simple formula learned via machine learning for creep rupture life prediction of high-temperature titanium alloys.J Mater Inf2024;4:24

[69]

Fox J. An R companion to applied regression. Sage publications: 2018. https://uk.sagepub.com/en-gb/eur/an-r-companion-to-applied-regression/book246125. (accessed 11 Apr 2025)

AI Summary AI Mindmap
PDF

59

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/