Data-driven strategy for bandgap database construction of perovskites and the potential segregation study

Bobin Wu , Xinyu Zhang , Zixuan Wang , Zijian Chen , Shaohui Liu , Jie Liu , Zhenming Xu , Qingde Sun , Haitao Zhao

Journal of Materials Informatics ›› 2024, Vol. 4 ›› Issue (2) : 7

PDF
Journal of Materials Informatics ›› 2024, Vol. 4 ›› Issue (2) :7 DOI: 10.20517/jmi.2024.10
Research Article

Data-driven strategy for bandgap database construction of perovskites and the potential segregation study

Author information +
History +
PDF

Abstract

Light-induced segregation limits the practical application of mixed halide perovskites in solar cells. Herein, halide segregation is evaluated by a data-driven approach with constructing a bandgap database of 53,361 mixed ABX3 [where A = Cs, formamidinium (FA) or methylammonium (MA); B = Pb or Sn; X = Br, Cl, or I] perovskites. A transfer learning strategy was employed to fine-tune the parameters of a Graph Neural Network model using experimental and density functional theory (DFT)-calculated bandgaps. This approach accelerated the construction of a unique database, distinguishing it from others primarily focused on ABX3 perovskite element substitution. The database is characterized by continuously varying compositions and accurate bandgaps. It was utilized to calculate the free energy of 20,688 mixed iodine-bromine perovskites and generate corresponding phase diagrams for predicting their light-induced segregation behavior. It is found that the bandgap increases with decreasing ionic radii at the A-site and X-site. This composition-dependent bandgap difference drives halide segregation. Moreover, using a higher Cs content at the A-site, rather than MA, reduces this bandgap difference, enhancing photostability. The proposed data-driven strategy can facilitate the targeted design of novel perovskites with mixed compositions and the investigation of halide perovskite segregation.

Keywords

Mixed halide perovskites / bandgap database / machine learning / halide segregation

Cite this article

Download citation ▾
Bobin Wu, Xinyu Zhang, Zixuan Wang, Zijian Chen, Shaohui Liu, Jie Liu, Zhenming Xu, Qingde Sun, Haitao Zhao. Data-driven strategy for bandgap database construction of perovskites and the potential segregation study. Journal of Materials Informatics, 2024, 4(2): 7 DOI:10.20517/jmi.2024.10

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yu W,Wang H.Breaking the bottleneck of lead-free perovskite solar cells through dimensionality modulation.Chem Soc Rev2024;53:1769-88

[2]

Raza H,Gao Y.Potential-induced degradation: a challenge in the commercialization of perovskite solar cells.Energy Environ Sci2024;17:1819-53

[3]

Liang Z,Xu H.Homogenizing out-of-plane cation composition in perovskite solar cells.Nature2023;624:557-63 PMCID:PMC10733143

[4]

Park SM,Lempesis N.Low-loss contacts on textured substrates for inverted perovskite solar cells.Nature2023;624:289-94

[5]

Brinkmann KO,Lang F.Perovskite-organic tandem solar cells.Nat Rev Mater2024;9:202-17

[6]

Suchan K,Rehermann C,Kirchartz T.Rationalizing performance losses of wide bandgap perovskite solar cells evident in data from the Perovskite Database.Adv Energy Mater2024;14:2303420

[7]

Wang YK,Li JY.In situ inorganic ligand replenishment enables bandgap stability in mixed-halide perovskite quantum dot solids.Adv Mater2022;34:e2200854

[8]

Yao Y,Zhang C,Wang K.Organic hole-transport layers for efficient, stable, and scalable inverted perovskite solar cells.Adv Mater2022;34:e2203794

[9]

Green MA,Yoshita M.Solar cell efficiency tables (version 62).Prog Photovoltaics2023;31:651-63

[10]

Aydin E,De Bastiani M.Pathways toward commercial perovskite/silicon tandem photovoltaics.Science2024;383:eadh3849

[11]

Xie L,Liu Y.Interface engineering for efficient raindrop solar cell.ACS Nano2022;16:5292-302

[12]

Grandhi GK,Krishnaiah M.Wide-bandgap perovskite-inspired materials: defect-driven challenges for high-performance optoelectronics.Adv Funct Mater2023;2307441

[13]

Feng HJ,Tsymbal EY.Tunable optical properties and charge separation in CH3NH3SnxPb1-xI3/TiO2-based planar perovskites cells.J Am Chem Soc2015;137:8227-36

[14]

Liu Z,Krogmeier B.Open-circuit voltages exceeding 1.26 V in planar methylammonium lead iodide perovskite solar cells.ACS Energy Lett2019;4:110-7

[15]

Brinkmann KO,Zimmermann F.Perovskite-organic tandem solar cells with indium oxide interconnect.Nature2022;604:280-6

[16]

Jiang Q,Xian Y.Surface reaction for efficient and stable inverted perovskite solar cells.Nature2022;611:278-83

[17]

Lin R,Wei M.All-perovskite tandem solar cells with improved grain surface passivation.Nature2022;603:73-8

[18]

Chen W,Xiu J.Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer.Nat Energy2022;7:229-37

[19]

Li L,Wang X.Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact.Nat Energy2022;7:708-17

[20]

Datta K,Hope MA.Light-induced halide segregation in 2D and quasi-2D mixed-halide perovskites.ACS Energy Lett2023;8:1662-70 PMCID:PMC10111410

[21]

Zhang J,Guo Q.A universal grain “cage” to suppress halide segregation of mixed-halide inorganic perovskite solar cells.ACS Energy Lett2022;7:3467-75

[22]

Wen J,Liu Z.Steric engineering enables efficient and photostable wide-bandgap perovskites for all-perovskite tandem solar cells.Adv Mater2022;34:e2110356

[23]

Yang G,Yu ZJ.Defect engineering in wide-bandgap perovskites for efficient perovskite-silicon tandem solar cells.Nat Photon2022;16:588-94

[24]

Wang C,Liang J.Suppressing phase segregation in wide bandgap perovskites for monolithic perovskite/organic tandem solar cells with reduced voltage loss.Small2022;18:e2204081

[25]

Wright AD,Johnston MB.Temperature-dependent reversal of phase segregation in mixed-halide perovskites.Adv Mater2023;35:e2210834

[26]

Shirzadi E,Ansari F,Hagfeldt A.Deconvolution of light-induced ion migration phenomena by statistical analysis of cathodoluminescence in lead halide-based perovskites.Adv Sci2022;9:e2103729 PMCID:PMC9069390

[27]

Wang Z,Zhu T.Suppressed phase segregation for triple-junction perovskite solar cells.Nature2023;618:74-9

[28]

Cai R,Wang X.Accelerated perovskite oxide development for thermochemical energy storage by a high-throughput combinatorial approach.Adv Energy Mater2023;13:2203833

[29]

Sabino FP,Zunger A.Light-induced frenkel defect pair formation can lead to phase-segregation of otherwise miscible halide perovskite alloys.Adv Energy Mater2023;13:2301539

[30]

Shin Y.Tunable ferroelectricity in oxygen-deficient perovskites with Grenier structure.npj Comput Mater2023;9:218

[31]

Barker AJ,Deschler F.Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films.ACS Energy Lett2017;2:1416-24

[32]

Mao W,Bernardi S.Light-induced reversal of ion segregation in mixed-halide perovskites.Nat Mater2021;20:55-61

[33]

Brennan MC,Kamat PV.Photoinduced anion segregation in mixed halide perovskites.Trends Chem2020;2:282-301

[34]

Chen Z,Tao S.Unified theory for light-induced halide segregation in mixed halide perovskites.Nat Commun2021;12:2687 PMCID:PMC8113520

[35]

Bechtel JS.First-principles thermodynamics study of phase stability in inorganic halide perovskite solid solutions.Phys Rev Mater2018;2:045401

[36]

Frohna K,Macpherson S.Nanoscale chemical heterogeneity dominates the optoelectronic response of alloyed perovskite solar cells.Nat Nanotechnol2022;17:190-6

[37]

Ghasemi M,Zhou C.Controllable acceleration and deceleration of charge carrier transport in metal-halide perovskite single-crystal by Cs-cation induced bandgap engineering.Small2022;18:e2107680

[38]

Mussakhanuly N,Bernardi S.Thermal disorder-induced strain and carrier localization activate reverse halide segregation.Adv Mater2024;36:e2311458

[39]

Zhu C,Fu Y.Strain engineering in perovskite solar cells and its impacts on carrier dynamics.Nat Commun2019;10:815 PMCID:PMC6379394

[40]

Yang F.Effects of size mismatch of halide ions on the phase stability of mixed halide perovskites.Phys Scr2024;99:025937

[41]

Slotcavage DJ,Mcgehee MD.Light-induced phase segregation in halide-perovskite absorbers.ACS Energy Lett2016;1:1199-205

[42]

Wang P,Cai B,Zheng X.Solution-processable perovskite solar cells toward commercialization: progress and challenges.Adv Funct Mater2019;29:1807661

[43]

Li N,Chen Z.Microscopic degradation in formamidinium-cesium lead iodide perovskite solar cells under operational stressors.Joule2020;4:1743-58

[44]

Gautam SK,Miquita DR,Geffroy B.Reversible photoinduced phase segregation and origin of long carrier lifetime in mixed-halide perovskite films.Adv Funct Mater2020;30:2002622

[45]

Das B,Rau U.Effect of doping, photodoping, and bandgap variation on the performance of perovskite solar cells.Adv Opt Mater2022;10:2101947

[46]

Wang T,Ardekani H.Sustainable materials acceleration platform reveals stable and efficient wide-bandgap metal halide perovskite alloys.Matter2023;6:2963-86

[47]

Mannodi-kanakkithodi A.Data-driven design of novel halide perovskite alloys.Energy Environ Sci2022;15:1930-49

[48]

Al-qaisi S,Alrebdi TA.First-principles investigations of Ba2NaIO6 double perovskite semiconductor: material for low-cost energy technologies.Mater Chem Phys2022;275:125237

[49]

Liu Y,Liang J,Xiang P.Machine learning for perovskite solar cells and component materials: key technologies and prospects.Adv Funct Mater2023;33:2214271

[50]

Li C.Methods, progresses, and opportunities of materials informatics.InfoMat2023;5:e12425

[51]

Zhao Y,Zhang J.A bilayer conducting polymer structure for planar perovskite solar cells with over 1,400 hours operational stability at elevated temperatures.Nat Energy2022;7:144-52

[52]

Zhao H,Huang H.A robotic platform for the synthesis of colloidal nanocrystals.Nat Synth2023;2:505-14

[53]

Liu S,Liu Y.Data-driven controlled synthesis of oriented quasi-spherical CsPbBr3 perovskite materials.Angew Chem Int Ed Engl2024;63:e202319480

[54]

Wu L,Yuan Z.Data-driven fine element tuning of halide double perovskite for enhanced photoluminescence.Adv Opt Mater2024;12:2301245

[55]

Wang Z,Yin H.Data-driven materials innovation and applications.Adv Mater2022;34:e2104113

[56]

Wang Z,Xie X.Applications of machine learning in perovskite materials.Adv Compos Hybrid Mater2022;5:2700-20

[57]

Liu Y,Han S.How machine learning predicts and explains the performance of perovskite solar cells.Solar RRL2022;6:2101100

[58]

Hu Y,Zhang L.Machine-learning modeling for ultra-stable high-efficiency perovskite solar cells.Adv Energy Mater2022;12:2201463

[59]

Priyanga GS,Nagappan N,Thomas T.Prediction of nature of band gap of perovskite oxides (ABO3) using a machine learning approach.J Materiomics2022;8:937-48

[60]

Chen C,Zuo Y,Ong SP.Graph networks as a universal machine learning framework for molecules and crystals.Chem Mater2019;31:3564-72

[61]

Chen C.AtomSets as a hierarchical transfer learning framework for small and large materials datasets.npj Comput Mater2021;7:173

[62]

Jacobsson TJ,García-fernández A.An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles.Nat Energy2022;7:107-15

[63]

Liu Y,Zhu H,Guan L.Study on bandgap predications of ABX3-type perovskites by machine learning.Org Electron2022;101:106426

[64]

Yang C,Hu M.Accelerating the discovery of hybrid perovskites with targeted band gaps via interpretable machine learning.ACS Appl Mater Interfaces2023;15:40419-27

[65]

Ong SP,Jain A.Python materials genomics (pymatgen): a robust, open-source python library for materials analysis.Comp Mater Sci2013;68:314-9

[66]

Chen C,Ye W,Ong SP.Learning properties of ordered and disordered materials from multi-fidelity data.Nat Comput Sci2021;1:46-53

[67]

Coley CW,Green WH,Jensen KF.Convolutional embedding of attributed molecular graphs for physical property prediction.J Chem Inf Model2017;57:1757-72

[68]

Wang J,Ji X,Lu W.Feature selection in machine learning for perovskite materials design and discovery.Materials2023;16:3134 PMCID:PMC10146176

[69]

Chen C.A universal graph deep learning interatomic potential for the periodic table.Nat Comput Sci2022;2:718-28

[70]

Deng B,Jun K.CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling.Nat Mach Intell2023;5:1031-41

[71]

Jain A,Hautier G.Commentary: the materials project: a materials genome approach to accelerating materials innovation.APL Materials2013;1:011002

[72]

Sher A,Chen AB.Quasichemical approximation in binary alloys.Phys Rev B Condens Matter1987;36:4279-95

[73]

Phan AT,Kang Y.Phase equilibria and thermodynamics of the Fe–Al–C system: critical evaluation, experiment and thermodynamic optimization.Acta Mater2014;79:1-15

[74]

Wasiur-rahman S.Critical assessment and thermodynamic modeling of the binary Mg–Zn, Ca–Zn and ternary Mg–Ca–Zn systems.Intermetallics2009;17:847-64

[75]

Zhu T,Grater L. Coupling photogeneration with thermodynamic modeling of light-induced alloy segregation enables the discovery of stabilizing dopants. arXiv. [Preprint.] Jan 30, 2023. [accessed on 22 May 2024]. Available from: https://doi.org/10.48550/arXiv.2301.12627.

[76]

Abedi S,Baninajarian S.Statistical analysis of the performance of a variety of first-principles schemes for accurate prediction of binary semiconductor band gaps.J Chem Phys2023;158:184109

[77]

Ramadan AJ,Johnston MB.Methylammonium-free wide-bandgap metal halide perovskites for tandem photovoltaics.Nat Rev Mater2023;8:822-38

[78]

Peng S,Braun M.Kinetics and mechanism of light-induced phase separation in a mixed-halide perovskite.Matter2023;6:2052-65

[79]

Wu P,Saidaminov MI.A Roadmap for efficient and stable all-perovskite tandem solar cells from a chemistry perspective.ACS Cent Sci2023;9:14-26 PMCID:PMC9881206

[80]

Eperon GE,Menelaou C,Herz LM.Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells.Energy Environ Sci2014;7:982

[81]

Brivio F,Walsh A.Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles.APL Mater2013;1:042111

[82]

Noh JH,Heo JH,Seok SI.Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells.Nano Lett2013;13:1764-9

[83]

Tao S,Brocks G.Absolute energy level positions in tin- and lead-based halide perovskites.Nat Commun2019;10:2560 PMCID:PMC6561953

[84]

Butler KT,Walsh A.Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3.Mater Horiz2015;2:228-31

[85]

Lu X,Li K.First-principles insight into the photoelectronic properties of Ge-based perovskites.RSC Adv2016;6:86976-81

[86]

Braly IL,Rajagopal A.Current-induced phase segregation in mixed halide hybrid perovskites and its impact on two-terminal tandem solar cell design.ACS Energy Lett2017;2:1841-7

[87]

Dong X,Niu T.Phase-pure engineering for efficient and stable formamidinium-based perovskite solar cells.Solar RRL2022;6:2200060

[88]

Otero-Martínez C,Schrenker NJ.Fast A-site cation cross-exchange at room temperature: single-to double- and triple-cation halide perovskite nanocrystals.Angew Chem Int Ed Engl2022;61:e202205617 PMCID:PMC9540746

[89]

Boldyreva AG,Tsarev S.Unraveling the impact of hole transport materials on photostability of perovskite films and p-i-n solar cells.ACS Appl Mater Interfaces2020;12:19161-73

[90]

Xie LQ,Nan ZA.Understanding the cubic phase stabilization and crystallization kinetics in mixed cations and halides perovskite single crystals.J Am Chem Soc2017;139:3320-3

[91]

Zhong Y,Wang X.Inhibition of ion migration for highly efficient and stable perovskite solar cells.Adv Mater2023;35:e2302552

[92]

Mathew P,Kamat PV.Ramifications of ion migration in 2D lead halide perovskites.ACS Energy Lett2024;9:1103-14

[93]

Zhang L,Jiang Y.Stable and efficient mixed-halide perovskite LEDs.ChemSusChem2024;17:e202301205

[94]

Sun H,Liu X.Suppressed phase segregation with small A-site and large X-site incorporation for photostable wide-bandgap perovskite solar cells.Small Methods2024;17:e2400067

[95]

Wang C,Zhou B.Self-healing behavior of the metal halide perovskites and photovoltaics.Small2024;20:e2307645

[96]

Wang K,Zhang J.Short-range migration of A-site cations inhibit photoinduced phase segregation in FAxMAyCs1-x-yPbI3-zBrz single crystals.J Phys Chem C2021;125:23050-7

[97]

Cho J.Photoinduced phase segregation in mixed halide perovskites: thermodynamic and kinetic aspects of Cl–Br segregation.Adv Opt Mater2021;9:2001440

[98]

Knight AJ.Preventing phase segregation in mixed-halide perovskites: a perspective.Energy Environ Sci2020;13:2024-46

[99]

Chen S,Chen H.Exploring the stability of novel wide bandgap perovskites by a robot based high throughput approach.Adva Energy Mater2018;8:1701543

[100]

Cao J,Liu S.Tailoring the Cs/Br ratio for efficient and stable wide-bandgap perovskite solar cells.Solar RRL2023;7:2200955

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/