PDF
Abstract
A comprehensive understanding of the interaction between liquids and two-dimensional (2D) materials is pivotal for the manipulation, transfer, and assembly of 2D materials across a wide range of applications, from liquid cell microscopy to hydrovoltaics. This review discusses this interaction by surveying the intrinsic wettability of suspended 2D materials and the apparent wettability of substrate-supported 2D materials, both of which have recently been revealed through water contact angle (WCA) experiments. We discuss important factors that can affect the apparent WCA, including thin film elasticity, surface contamination, and the microstructure and electronic state of the underneath substrate. We also discuss some microscopic-level insights into the 2D material-liquid interface that have recently been provided via spectroscopy characterizations and surface energy measurements. By discussing the latest experimental advancements in characterizing the interaction between 2D materials and liquid droplets, this review aims to inspire future theoretical progress capable of unraveling the intricate and occasionally contradictory wetting behavior observed in 2D material systems.
Keywords
2D materials
/
wettability
/
water contact angle
/
elastocapillarity
/
surface energy
Cite this article
Download citation ▾
Chuanli Yu, Zhaohe Dai.
Characterizing the wetting behavior of 2D materials: a review.
Journal of Materials Informatics, 2023, 3(3): 20 DOI:10.20517/jmi.2023.27
| [1] |
Radisavljevic B,Brivio J,Kis A.Single-layer MoS2 transistors.Nat Nanotechnol2011;6:147-50
|
| [2] |
Koppens FHL,Avouris P,Vitiello MS.Photodetectors based on graphene, other two-dimensional materials and hybrid systems.Nat Nanotechnol2014;9:780-93
|
| [3] |
Papageorgiou DG,Young RJ.Mechanical properties of graphene and graphene-based nanocomposites.Prog Mater Sci2017;90:75-127
|
| [4] |
Liu X,Pinna N.Two-dimensional nanostructured materials for gas sensing.Adv Funct Mater2017;27:1702168
|
| [5] |
Khan K,Aslam M.Recent developments in emerging two-dimensional materials and their applications.J Mater Chem C2020;8:387-440
|
| [6] |
Yin J,Yu J,Zhou J.Generating electricity by moving a droplet of ionic liquid along graphene.Nat Nanotechnol2014;9:378-83
|
| [7] |
Liu X.Interface characterization and control of 2D Materials and heterostructures.Adv Mater2018;30:e1801586
|
| [8] |
Dai Z,Liechti KM.Mechanics at the interfaces of 2D materials: challenges and opportunities.Curr Opin Solid State Mater Sci2020;24:100837
|
| [9] |
Aria AI,Weatherup RS,Williams JA.Time evolution of the wettability of supported graphene under ambient air exposure.J Phys Chem C Nanomater Interfaces2016;120:2215-24 PMCID:PMC4754094
|
| [10] |
Bera B,Mishra H,Schneider GF.Wetting of water on graphene nanopowders of different thicknesses.Appl Phys Lett2018;112:151606
|
| [11] |
Du F,Duan H,Wang J.Wetting transparency of supported graphene is regulated by polarities of liquids and substrates.Appl Surf Sci2018;454:249-55
|
| [12] |
Kim D,Park S.Wettability of graphene and interfacial water structure.Chem2021;7:1602-14
|
| [13] |
Kim E,Kwak K,Bonn M.Wettability of graphene, water contact angle, and interfacial water structure.Chem2022;8:1187-200
|
| [14] |
Ondarçuhu T,Nuñez M.Wettability of partially suspended graphene.Sci Rep2016;6:24237 PMCID:PMC4829856
|
| [15] |
Zhang J,Huang Y.Intrinsic wettability in pristine graphene (Adv. Mater. 6/2022).Adv Mater2022;34:e2103620
|
| [16] |
Zhao Y,Huang W.Investigations on the wettability of graphene on a micron-scale hole array substrate.RSC Adv2016;6:1999-2003
|
| [17] |
Chen L,Shen J.Ion sieving in graphene oxide membranes via cationic control of interlayer spacing.Nature2017;550:380-3
|
| [18] |
Hu S,Wang FC.Proton transport through one-atom-thick crystals.Nature2014;516:227-30
|
| [19] |
Lozada-Hidalgo M,Marshall O.Sieving hydrogen isotopes through two-dimensional crystals.Science2016;351:68-70
|
| [20] |
Joshi RK,Wang FC.Precise and ultrafast molecular sieving through graphene oxide membranes.Science2014;343:752-4
|
| [21] |
Abdolhosseinzadeh S,Schneider R,Nüesch F.A universal approach for room-temperature printing and coating of 2D materials (Adv. Mater. 4/2022).Adv Mater2022;34:2270033
|
| [22] |
Wang J,Zhang H,Chen Y.Programmable wettability on photocontrolled graphene film.Sci Adv2018;4:eaat7392 PMCID:PMC6140404
|
| [23] |
Das S,Thomas J.2D materials: the role of graphene and other 2D materials in solar photovoltaics (Adv. Mater. 1/2019).Adv Mater2019;31:1970006
|
| [24] |
Aryal UK,Turkovic V,Di Carlo A.2D materials for organic and perovskite photovoltaics.Nano Energy2022;94:106833
|
| [25] |
Zhou KG,Cherian CT.Electrically controlled water permeation through graphene oxide membranes.Nature2018;559:236-40
|
| [26] |
Zhu Y,Stoller MD.Carbon-based supercapacitors produced by activation of graphene.Science2011;332:1537-41
|
| [27] |
Liu Z,Chen Z.Recent advances in two-dimensional materials for hydrovoltaic energy technology.Exploration2023;3:20220061 PMCID:PMC10191061
|
| [28] |
Shih CJ,Lin S.Erratum: breakdown in the wetting transparency of graphene [Phys. Rev. Lett. 109, 176101 (2012)].Phys Rev Lett2012;115:049901
|
| [29] |
Parobek D.Wettability of graphene.2D Mater2015;2:032001
|
| [30] |
Leenaerts O,Peeters FM.Water on graphene: hydrophobicity and dipole moment using density functional theory.Phys Rev B2009;79:235440
|
| [31] |
Rafiee J,Gullapalli H.Wetting transparency of graphene.Nat Mater2012;11:217-22
|
| [32] |
Raj R,Wang EN.Wettability of graphene.Nano Lett2013;13:1509-15
|
| [33] |
Shih CJ,Blankschtein D.Wetting translucency of graphene.Nat Mater2013;12:866-9
|
| [34] |
Zhao G,Huang M.The physics and chemistry of graphene-on-surfaces.Chem Soc Rev2017;46:4417-49
|
| [35] |
Snapp P,Cho C,Haque MF.Interaction of 2D materials with liquids: wettability, electrochemical properties, friction, and emerging directions.NPG Asia Mater2020;12:22
|
| [36] |
Belyaeva LA.Wettability of graphene.Surf Sci Rep2020;75:100482
|
| [37] |
Xia K,Zhang W.Visualization of graphene on various substrates based on water wetting behavior.Adv Mater Interfaces2016;3:1500674
|
| [38] |
Zhao J,Cao R.Liquefaction of water on the surface of anisotropic two-dimensional atomic layered black phosphorus.Nat Commun2019;10:4062 PMCID:PMC6731341
|
| [39] |
Schulman RD,Salez T,Dalnoki-Veress K.Liquid droplets act as “compass needles” for the stresses in a deformable membrane.Phys Rev Lett2017;118:198002
|
| [40] |
Sanchez DA,Lu N.2D material bubbles: fabrication, characterization, and applications.Trends Chem2021;3:204-17
|
| [41] |
Rao Y,Dai Z.Elastic wetting: Substrate-supported droplets confined by soft elastic membranes.J Mech Phys Solids2021;151:104399
|
| [42] |
Rao Y,Dai Z,Li Y.Size-dependent shape characteristics of 2D crystal blisters.J Mech Phys Solids2023;175:105286
|
| [43] |
Dai Z,Lu N.Two-dimensional crystals on adhesive substrates subjected to uniform transverse pressure.Int J Solids Struct2022;257:111829
|
| [44] |
Ma J,Hoque MJ.Role of thin film adhesion on capillary peeling.Nano Lett2021;21:9983-9
|
| [45] |
Liu H,Man P.Controlled adhesion of ice-toward ultraclean 2D materials (Adv. Mater. 14/2023).Adv Mater2023;35:2370102
|
| [46] |
Cai J,Ke Y.A capillary-force-assisted transfer for monolayer transition-metal-dichalcogenide crystals with high utilization.ACS Nano2022;16:15016-25
|
| [47] |
Zhang Y,Baek Y.Capillary transfer of soft films.Proc Natl Acad Sci U S A2020;117:5210-6 PMCID:PMC7071914
|
| [48] |
Gurarslan A,Su L.Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates.ACS Nano2014;8:11522-8
|
| [49] |
Zhao H,Liu F.Fluidic flow assisted deterministic folding of van der Waals materials.Adv Funct Mater2020;30:1908691
|
| [50] |
Ferrari GA,Silvestre I.Apparent softening of wet graphene membranes on a microfluidic platform.ACS Nano2018;12:4312-20
|
| [51] |
Chen E.Axisymmetric peeling of thin elastic films: a perturbation solution.J Appl Mech2023;90:101011
|
| [52] |
Cao P,Omrani AA.Preventing thin film dewetting via graphene capping.Adv Mater2017;29:1701536
|
| [53] |
Ares P,Holwill M.Piezoelectric materials: piezoelectricity in monolayer hexagonal boron nitride (Adv. Mater. 1/2020).Adv Mater2020;32:e1905504
|
| [54] |
Ares P,Woods CR.Van der Waals interaction affects wrinkle formation in two-dimensional materials.Proc Natl Acad Sci U S A2021;118-e2025870118 PMCID:PMC8040643
|
| [55] |
Dai Z.Droplets on lubricated surfaces: the slow dynamics of skirt formation.Phys Rev Fluids2022;7:054003
|
| [56] |
Hou Y,Zhang S.Elastocapillary cleaning of twisted bilayer graphene interfaces.Nat Commun2021;12:5069 PMCID:PMC8379234
|
| [57] |
Ross FM.Opportunities and challenges in liquid cell electron microscopy.Science2015;350:aaa9886
|
| [58] |
Ghodsi SM,Shahbazian-yassar R.Advances in graphene-based liquid cell electron microscopy: working principles, opportunities, and challenges.Small Methods2019;3:1900026
|
| [59] |
Zhang J,Sun L.Clean transfer of large graphene single crystals for high-intactness suspended membranes and liquid cells.Adv Mater2017;29:1700639
|
| [60] |
Yuk JM,Ercius P.High-resolution EM of colloidal nanocrystal growth using graphene liquid cells.Science2012;336:61-4
|
| [61] |
Park J,Noh N.Graphene liquid cell electron microscopy: progress, applications, and perspectives.ACS Nano2021;15:288-308
|
| [62] |
Park JB,Kang S,Hong BH.Distortion in two-dimensional shapes of merging nanobubbles: evidence for anisotropic gas flow mechanism.Langmuir2016;32:11303-8
|
| [63] |
Shin D,Kim YJ.Growth dynamics and gas transport mechanism of nanobubbles in graphene liquid cells.Nat Commun2015;6:6068
|
| [64] |
Yoshida H,Rotenberg B.Dripplons as localized and superfast ripples of water confined between graphene sheets.Nat Commun2018;9:1496 PMCID:PMC5902618
|
| [65] |
Sun JS,Park HS.Self-cleaning by harnessing wrinkles in two-dimensional layered crystals.Nanoscale2017;10:312-8
|
| [66] |
Sanchez DA,Wang P.Mechanics of spontaneously formed nanoblisters trapped by transferred 2D crystals.Proc Natl Acad Sci U S A2018;115:7884-9 PMCID:PMC6077740
|
| [67] |
Algara-Siller G,Wang FC.Square ice in graphene nanocapillaries.Nature2015;519:443-5
|
| [68] |
Novoselov KS,Carvalho A.2D materials and van der Waals heterostructures.Science2016;353:aac9439
|
| [69] |
Wang S,Abidi N.Wettability and surface free energy of graphene films.Langmuir2009;25:11078-81
|
| [70] |
Prydatko AV,Jiang L,Schneider GF.Contact angle measurement of free-standing square-millimeter single-layer graphene.Nat Commun2018;9:4185 PMCID:PMC6180012
|
| [71] |
Wang H,Song D.Non-wetting of condensation-induced droplets on smooth monolayer suspended graphene with contact angle approaching 180 degrees.Commun Mater2022;3:75
|
| [72] |
Bico J,Roman B.Elastocapillarity: when surface tension deforms elastic solids.Annu Rev Fluid Mech2018;50:629-59
|
| [73] |
Lin L,Su H.Towards super-clean graphene.Nat Commun2019;10:1912 PMCID:PMC6478734
|
| [74] |
Choi J,Wang MC,Kang SW.Hierarchical, dual-scale structures of atomically thin MoS2 for tunable wetting.Nano Lett2017;17:1756-61
|
| [75] |
Gaire B,Dhinojwala A.Screening of hydrogen bonding interactions by a single layer graphene†.Nanoscale2021;13:8098-106
|
| [76] |
Li Z,Kozbial A.Effect of airborne contaminants on the wettability of supported graphene and graphite.Nat Mater2013;12:925-31
|
| [77] |
Kim GT,Cho SM,Oh IK.Wetting-transparent graphene films for hydrophobic water-harvesting surfaces.Adv Mater2014;26:5166-72
|
| [78] |
Shin YJ,Huang H.Surface-energy engineering of graphene.Langmuir2010;26:3798-802
|
| [79] |
Lai CY,Amadei CA.A nanoscopic approach to studying evolution in graphene wettability.Carbon2014;80:784-92
|
| [80] |
Kozbial A,Sun J.Understanding the intrinsic water wettability of graphite.Carbon2014;74:218-25
|
| [81] |
Gurarslan A,Li TD.Van der Waals force isolation of monolayer MoS2.Adv Mater2016;28:10055-60
|
| [82] |
Chow PK,Viana BC.Wetting of mono and few-layered WS2 and MoS2 films supported on Si/SiO2 substrates.ACS Nano2015;9:3023-31
|
| [83] |
Singh B,Chakravorty A,Ghosh S.Wetting behavior of MoS2 thin films.Mater Res Express2019;6:096424
|
| [84] |
Li S,Klimeš J.Understanding the wetting of transition metal dichalcogenides from an ab initio perspective.Phys Rev Res2023;5:023018
|
| [85] |
Rodrigues SP,Carvalho S.Fluorine-carbon doping of WS-based coatings deposited by reactive magnetron sputtering for low friction purposes.Appl Surf Sci2018;445:575-85
|
| [86] |
Liu X,Guo W.van der Waals screening by graphenelike monolayers.Phys Rev B2018;97:241411
|
| [87] |
Wagemann E,Das S.On the wetting translucency of hexagonal boron nitride†.Phys Chem Chem Phys2020;22:7710-8
|
| [88] |
Wagemann E,Das S.Wettability of nanostructured hexagonal boron nitride surfaces: molecular dynamics insights on the effect of wetting anisotropy.Phys Chem Chem Phys2020;22:2488-97
|
| [89] |
Li X,Liu X,Guo W.Wettability of supported monolayer hexagonal boron nitride in air.Adv Funct Mater2017;27:1603181
|
| [90] |
Chen X,Feng S.How universal is the wetting aging in 2D materials.Nano Lett2020;20:5670-7
|
| [91] |
Wang FC.Pinning and depinning mechanism of the contact line during evaporation of nano-droplets sessile on textured surfaces.Soft Matter2013;9:5703-9
|
| [92] |
Wang L.Conformability of a thin elastic membrane laminated on a soft substrate with slightly wavy surface.J Appl Mech2016;83:041007
|
| [93] |
Gao W.Effect of surface roughness on adhesion of graphene membranes.J Phys D Appl Phys2011;44:452001
|
| [94] |
Wagner TJW.The sensitivity of graphene “snap-through” to substrate geometry.Appl Phys Lett2012;100:233111
|
| [95] |
Liu S,Rao Y.Conformability of flexible sheets on spherical surfaces.Sci Adv2023;9:eadf2709 PMCID:PMC10115424
|
| [96] |
Box F,Corvo TO.Delamination from an adhesive sphere: Curvature-induced dewetting versus buckling.Proc Natl Acad Sci U S A2023;120:e2212290120 PMCID:PMC10041104
|
| [97] |
Du F,Duan H,Wang J.Surface stress of graphene layers supported on soft substrate.Sci Rep2016;6:25653 PMCID:PMC4863371
|
| [98] |
Fang Z,Wang B.Pull-to-peel of two-dimensional materials for the simultaneous determination of elasticity and adhesion.Nano Lett2023;23:742-9
|
| [99] |
Dai Z,Sanchez DA.Interface-governed deformation of nanobubbles and nanotents formed by two-dimensional materials.Phys Rev Lett2018;121:266101
|
| [100] |
Dai Z,Zhang Z.2D materials: strain engineering of 2D materials: issues and opportunities at the interface (Adv. Mater. 45/2019).Adv Mater2019;31:1970322
|
| [101] |
Dai Z.Poking and bulging of suspended thin sheets: slippage, instabilities, and metrology.J Mech Phys Solids2021;149:104320
|
| [102] |
Dai Z,Brennan CJ.Radial buckle delamination around 2D material tents.J Mech Phys Solids2020;137:103843
|
| [103] |
Deng S.Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications.Mater Today2016;19:197-212
|
| [104] |
Zang J,Pugno N.Multifunctionality and control of the crumpling and unfolding of large-area graphene.Nat Mater2013;12:321-5 PMCID:PMC3605241
|
| [105] |
Ashraf A,Wang MC.Doping-induced tunable wettability and adhesion of graphene.Nano Lett2016;16:4708-12
|
| [106] |
Hong G,Schutzius TM.On the mechanism of hydrophilicity of graphene.Nano Lett2016;16:4447-53
|
| [107] |
van Engers CD,Babenko V.Direct measurement of the surface energy of graphene.Nano Lett2017;17:3815-21
|
| [108] |
Johnson KL.An adhesion map for the contact of elastic spheres.J Colloid Interf Sci1997;192:326-33
|
| [109] |
Tiwari A,Persson BNJ.Adhesion paradox: why adhesion is usually not observed for macroscopic solids.Phys Rev E2020;102:042803
|
| [110] |
Tsoi S,Friedman AL.van der Waals screening by single-layer graphene and molybdenum disulfide.ACS Nano2014;8:12410-7
|
| [111] |
Suk JW,Stromberg RJ.Probing the adhesion interactions of graphene on silicon oxide by nanoindentation.Carbon2016;103:63-72
|
| [112] |
Li B,Liu X.Probing van der Waals interactions at two-dimensional heterointerfaces.Nat Nanotechnol2019;14:567-72
|
| [113] |
Lambert AG,Neivandt DJ.Implementing the theory of sum frequency generation vibrational spectroscopy: a tutorial review.Appl Spectrosc Rev2005;40:103-45
|
| [114] |
Morita A.Recent progress in theoretical analysis of vibrational sum frequency generation spectroscopy.Phys Chem Chem Phys2008;10:5801-16
|
| [115] |
Nagata Y.Vibrational sum-frequency generation spectroscopy at the water/lipid interface: molecular dynamics simulation study.J Am Chem Soc2010;132:6434-42 PMCID:PMC3151577
|
| [116] |
Singla S,Islam AE.Insight on structure of water and ice next to graphene using surface-sensitive spectroscopy.ACS Nano2017;11:4899-906
|
| [117] |
Dreier LB,Narita A.Surface-specific spectroscopy of water at a potentiostatically controlled supported graphene monolayer.J Phys Chem C2019;123:24031-8 PMCID:PMC6778968
|
| [118] |
Castro FJ.Thermal desorption spectroscopy (TDS) method for hydrogen desorption characterization (I): theoretical aspects.J Alloys Compd2002;330-2:59-63
|
| [119] |
von Zeppelin F, Haluška M, Hirscher M. Thermal desorption spectroscopy as a quantitative tool to determine the hydrogen content in solids.Thermochim Acta2003;404:251-8
|
| [120] |
Belyaeva LA,Juurlink L.Macroscopic and microscopic wettability of graphene.Langmuir2021;37:4049-55 PMCID:PMC8047800
|