Recent advances in the interface structure prediction for heteromaterial systems

Ji-Li Li , Ye-Fei Li

Journal of Materials Informatics ›› 2023, Vol. 3 ›› Issue (4) : 22

PDF
Journal of Materials Informatics ›› 2023, Vol. 3 ›› Issue (4) :22 DOI: 10.20517/jmi.2023.24
Review

Recent advances in the interface structure prediction for heteromaterial systems

Author information +
History +
PDF

Abstract

The atomic structures of solid-solid interfaces in materials are of fundamental importance for understanding the physical properties of interfacial materials, which is, however, difficult to determine both in experimental and theoretical approaches. New theoretical methodologies utilizing various global optimization algorithms and machine learning (ML) potentials have emerged in recent years, offering a promising approach to unraveling interfacial structures. In this review, we give a concise overview of state-of-the-art techniques employed in the studies of interfacial structures, e.g., ML-assisted phenomenological theory for the global search of interface structure (ML-interface). We also present a few applications of these methodologies.

Keywords

Solid-solid interfaces / machine learning / ML-interface / interface structure prediction

Cite this article

Download citation ▾
Ji-Li Li, Ye-Fei Li. Recent advances in the interface structure prediction for heteromaterial systems. Journal of Materials Informatics, 2023, 3(4): 22 DOI:10.20517/jmi.2023.24

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hilgenkamp H.Grain boundaries in high-Tc superconductors.Rev Mod Phys2002;74:485-549

[2]

Dillon SJ,Carter WC.Complexion: a new concept for kinetic engineering in materials science.Acta Mater2007;55:6208-18

[3]

Robertson J.High dielectric constant gate oxides for metal oxide Si transistors.Rep Prog Phys2006;69:327-96

[4]

Li YF.Smallest stable Si/SiO2 interface that suppresses quantum tunneling from machine-learning-based global search.Phys Rev Lett2022;128:226102

[5]

Franklin AD.Nanomaterials in transistors: from high-performance to thin-film applications.Science2015;349:aab2750

[6]

Buczko R,Pantelides ST.Bonding arrangements at the Si-SiO2 and SiC-SiO2 interfaces and a possible origin of their contrasting properties.Phys Rev Lett2000;84:943-6

[7]

Tu Y.Structure and energetics of the Si- SiO2 interface.Phys Rev Lett2000;84:4393-6

[8]

Tang H,Lin Z.Probing solid-solid interfacial reactions in all-solid-state sodium-ion batteries with first-principles calculations.Chem Mater2018;30:163-73

[9]

Han X,Fu KK.Negating interfacial impedance in garnet-based solid-state Li metal batteries.Nat Mater2017;16:572-9

[10]

Ohta N,Zhang L,Osada M.Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification.Adv Mater2006;18:2226-9

[11]

Takada K,Zhang L.Interfacial modification for high-power solid-state lithium batteries.Solid State Ion2008;179:1333-7

[12]

Li LF,Liu ZP.CO2 photoreduction via quantum tunneling: thin TiO2-coated GaP with coherent interface to achieve electron tunneling.ACS Catal2019;9:5668-78

[13]

Chua AL,Chen L,Sutton AP.A genetic algorithm for predicting the structures of interfaces in multicomponent systems.Nat Mater2010;9:418-22

[14]

Zhang Z,Phillipp F.Direct atom-resolved imaging of oxides and their grain boundaries.Science2003;302:846-9

[15]

Sun R,Saito M,Ikuhara Y.Atomistic mechanisms of nonstoichiometry-induced twin boundary structural transformation in titanium dioxide.Nat Commun2015;6:7120 PMCID:PMC4432645

[16]

von Alfthan S, Haynes PD, Kaski K, Sutton AP. Are the structures of twist grain boundaries in silicon ordered at 0 K?.Phys Rev Lett2006;96:055505

[17]

Zhang J,Ho KM.Finding the low-energy structures of Si[001] symmetric tilted grain boundaries with a genetic algorithm.Phys Rev B2009;80:174102

[18]

Benedek NA,Elsässer C,Finnis MW.Interatomic potentials for strontium titanate: an assessment of their transferability and comparison with density functional theory.Phys Rev B2008;78:064110

[19]

Peacock PW,Tse K.Bonding and interface states of Si:HfO2 and Si:ZrO2 interfaces.Phys Rev B2006;73:075328

[20]

Woicik JC,Hellberg CS.Ferroelectric distortion in SrTiO3 thin films on Si(001) by x-ray absorption fine structure spectroscopy: Experiment and first-principles calculations.Phys Rev B2007;75:140103

[21]

Barcaro G,Negreiros FR,Vajda S.Atomistic and electronic structure methods for nanostructured oxide interfaces. In: Netzer FP, Fortunelli A, editors. Oxide materials at the two-dimensional limit. Cham: Springer International Publishing; 2016. p. 39-90.

[22]

Wales DJ.Global optimization by basin-hopping and the lowest energy structures of lennard-jones clusters containing up to 110 atoms.J Phys Chem A1997;101:5111-6

[23]

Zhao X,Nguyen MC.Interface structure prediction from first-principles.J Phys Chem C2014;118:9524-30

[24]

Dekkers A.Global optimization and simulated annealing.Math Program1991;50:367-93

[25]

Romeijn HE.Simulated annealing for constrained global optimization.J Glob Optim1994;5:101-26

[26]

Wang Y,Zhu L.CALYPSO: a method for crystal structure prediction.Comput Phys Commun2012;183:2063-70

[27]

Wang H,Lv J,Zhang L.CALYPSO structure prediction method and its wide application.Comput Mater Sci2016;112:406-15

[28]

Li ZL,Cao HY.What are grain boundary structures in graphene?.Nanoscale2014;6:4309-15

[29]

Schusteritsch G.Predicting interface structures: from SrTiO3 to graphene.Phys Rev B2014;90:035424

[30]

Zhu Q,Li B,Frolov T.Predicting phase behavior of grain boundaries with evolutionary search and machine learning.Nat Commun2018;9:467 PMCID:PMC5794988

[31]

Shang C.Stochastic surface walking method for structure prediction and pathway searching.J Chem Theory Comput2013;9:1838-45

[32]

Shang C,Liu ZP.Stochastic surface walking method for crystal structure and phase transition pathway prediction.Phys Chem Chem Phys2014;16:17845-56

[33]

Ma S.Machine learning for atomic simulation and activity prediction in heterogeneous catalysis: current status and future.ACS Catal2020;10:13213-26

[34]

Zur A.Lattice match: an application to heteroepitaxy.J Appl Phys1984;55:378-86

[35]

Gao B,Lu S,Wang Y.Interface structure prediction via CALYPSO method.Sci Bull2019;64:301-9

[36]

Wang Y,Zhu L.Materials discovery via CALYPSO methodology.J Phys Condens Matter2015;27:203203

[37]

Shi Y,Shahbazian-Yassar R,Saidi WA.Experimentally validated structures of supported metal nanoclusters on MoS2.J Phys Chem Lett2018;9:2972-8

[38]

Tong Q,Lv J,Ma Y.Accelerating CALYPSO structure prediction by data-driven learning of a potential energy surface.Faraday Discuss2018;211:31-43

[39]

Zhao WN,Li YF.Three-phase junction for modulating electron-hole migration in anatase-rutile photocatalysts.Chem Sci2015;6:3483-94 PMCID:PMC5659171

[40]

Zhu ZY,Shang C.Thermodynamics and catalytic activity of ruthenium oxides grown on ruthenium metal from a machine learning atomic simulation.J Phys Chem C2021;125:17088-96

[41]

Hu YF,Liu ZP.Structural origin for efficient photoelectrochemical water splitting over Fe-modified BiVO4.ACS Catal2023;13:10167-76

[42]

Hao Y,Wang S.Electrode/electrolyte synergy for concerted promotion of electron and proton transfers toward efficient neutral water oxidation.Angew Chem Int Ed2023;62:e202303200

[43]

Huang SD,Zhang XJ.Material discovery by combining stochastic surface walking global optimization with a neural network.Chem Sci2017;8:6327-37 PMCID:PMC5628601

[44]

Huang SD,Kang PL,Liu ZP.LASP: Fast global potential energy surface exploration.WIREs Comput Mol Sci2019;9:e1415

[45]

Kang P,Liu Z.Recent implementations in LASP 3.0: Global neural network potential with multiple elements and better long-range description.Chin J Chem Phys2021;34:583-90

[46]

Bilodeau C,Jaakkola T,Jensen KF.Generative models for molecular discovery: recent advances and challenges.WIREs Comput Mol Sci2022;12:e1608

[47]

Chen L,Nie Z,Pan F.Generative models for inverse design of inorganic solid materials.J Mater Inf2021;1:4

[48]

Noh J,Kim S.Machine-enabled inverse design of inorganic solid materials: promises and challenges.Chem Sci2020;11:4871-81 PMCID:PMC8159218

[49]

Kim S,Gu GH,Jung Y.Generative adversarial networks for crystal structure prediction.ACS Cent Sci2020;6:1412-20 PMCID:PMC7453563

[50]

Nouira A,Crivello J-CJapa. Crystalgan: learning to discover crystallographic structures with generative adversarial networks. arXiv. [Preprint.] May 25, 2019 [accessed 2023 October 14]. Available from: https://arxiv.org/abs/1810.11203.

[51]

Lyngby P.Data-driven discovery of 2D materials by deep generative models.npj Comput Mater2022;8:232

[52]

Gebauer NWA,Hessmann SSP,Schütt KT.Inverse design of 3d molecular structures with conditional generative neural networks.Nat Commun2022;13:973 PMCID:PMC8861047

[53]

Moreno JJG.Ab initio study of the atomic level structure of the rutile TiO2(110)-titanium nitride (TiN) interface.ACS Appl Mater Interfaces2017;9:38089-100

[54]

Andrews LC. The geometry of niggli reduction I: the boundary polytopes of the niggli cone. arXiv. [Preprint.] Aug 9, 2013 [accessed 2023 October 14]. Available from: https://arxiv.org/abs/1203.5146.

[55]

Andrews LC. The geometry of niggli reduction II: BGAOL--embedding niggli reduction. arXiv. [Preprint.] May 28, 2013 [accessed 2023 October 14]. Available from: https://arxiv.org/abs/1305.6561.

[56]

McGill KJ,Karakasheva MT,Bernstein HJ. The geometry of niggli reduction III: SAUC--search of alternate unit cells. arXiv. [Preprint.] Jul 9, 2013 [accessed 2023 October 14]. Available from: https://arxiv.org/abs/1307.1811.

[57]

Wang Y,Lv J.An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm.J Chem Phys2012;137:224108

[58]

Zhu L,Pickard CJ,Ma Y.Reactions of xenon with iron and nickel are predicted in the Earth’s inner core.Nat Chem2014;6:644-8

[59]

Lv J,Zhu L.Particle-swarm structure prediction on clusters.J Chem Phys2012;137:084104

[60]

Lu S,Liu H,Ma Y.Self-assembled ultrathin nanotubes on diamond (100) surface.Nat Commun2014;5:3666

[61]

Gao B,Lv J,Ma Y.Structure prediction of atoms adsorbed on two-dimensional layer materials: method and applications.J Phys Chem C2015;119:20111-8

[62]

Bowles JS.The crystallography of martensite transformations I.Acta Metall1954;2:129-37

[63]

Mackenzie JK.The crystallography of martensite transformations II.Acta Metall1954;2:138-47

[64]

Wayman CM.The phenomenological theory of martensite crystallography: interrelationships.Metall Mater Trans A1994;25:1787-95

[65]

Krivy I.A unified algorithm for determining the reduced (Niggli) cell.Acta Crystallogr A1976;32:297-8

[66]

Gruber B.The relationship between reduced cells in a general Bravais lattice.Acta Crystallogr A1973;29:433-40

[67]

Grosse-Kunstleve RW,Adams PD.Numerically stable algorithms for the computation of reduced unit cells.Acta Crystallogr A2004;60:1-6

[68]

Andrews LC,Sauter NK.Selling reduction versus Niggli reduction for crystallographic lattices.Acta Crystallogr A Found Adv2019;75:115-20 PMCID:PMC6302928

[69]

Pyykkö P.Molecular single-bond covalent radii for elements 1-118.Chemistry2009;15:186-97

[70]

Isayev O,Toher C,Curtarolo S.Universal fragment descriptors for predicting properties of inorganic crystals.Nat Commun2017;8:15679 PMCID:PMC5465371

[71]

Blatov VA.Voronoi-dirichlet polyhedra in crystal chemistry: theory and applications.Crystallogr Rev2004;10:249-318

[72]

Ford LR.Maximal flow through a network.Can j math1956;8:399-404

[73]

Witman M,Boyd P.Cutting materials in half: a graph theory approach for generating crystal surfaces and its prediction of 2D zeolites.ACS Cent Sci2018;4:235-45 PMCID:PMC5832999

[74]

Li YF.First-principles simulations for morphology and structural evolutions of catalysts in oxygen evolution reaction.ChemSusChem2019;12:1846-57

[75]

Li JL,Liu ZP.In situ structure of a Mo-doped Pt-Ni catalyst during electrochemical oxygen reduction resolved from machine learning-based grand canonical global optimization.JACS Au2023;3:1162-75 PMCID:PMC10131196

[76]

Huang SD,Kang PL.Atomic structure of boron resolved using machine learning and global sampling.Chem Sci2018;9:8644-55 PMCID:PMC6289100

[77]

Zhang XJ,Liu ZP.From atoms to fullerene: stochastic surface walking solution for automated structure prediction of complex material.J Chem Theory Comput2013;9:3252-60

[78]

Ma S,Liu ZP.Dynamic coordination of cations and catalytic selectivity on zinc–chromium oxide alloys during syngas conversion.Nat Catal2019;2:671-7

[79]

Shi YF,Shang C.Methanol synthesis from CO2/CO mixture on Cu-Zn catalysts from microkinetics-guided machine learning pathway search.J Am Chem Soc2022;144:13401-14

[80]

Liu QY,Liu ZP.In situ active site for fe-catalyzed fischer-tropsch synthesis: recent progress and future challenges.J Phys Chem Lett2022;13:3342-52

[81]

Lin C,Li X.In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation.Nat Catal2021;4:1012-23

[82]

Behler J.Generalized neural-network representation of high-dimensional potential-energy surfaces.Phys Rev Lett2007;98:146401

[83]

Behler J.Representing potential energy surfaces by high-dimensional neural network potentials.J Phys Condens Matter2014;26:183001

[84]

Schütt KT,Kindermans PJ,Müller KR.SchNet - a deep learning architecture for molecules and materials.J Chem Phys2018;148:241722

[85]

Park CW.Developing an improved crystal graph convolutional neural network framework for accelerated materials discovery.Phys Rev Mater2020;4:063801

[86]

Bartók AP,Kondor R.Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons.Phys Rev Lett2010;104:136403

[87]

Lu X,Wu X,Cai W.Hydrogen storage metal-organic framework classification models based on crystal graph convolutional neural networks.Chem Eng Sci2022;259:117813

[88]

Westermayr J,Marquetand P.Combining SchNet and SHARC: the SchNarc machine learning approach for excited-state dynamics.J Phys Chem Lett2020;11:3828-34 PMCID:PMC7246974

[89]

Li H,Robertson J.Ab-initio simulations of higher Miller index Si:SiO2 interfaces for fin field effect transistor and nanowire transistors.J Appl Phys2016;119:054103

[90]

Korkin A,Bersuker G,Bartlett RJ.Computational design of Si/SiO2 interfaces: Stress and strain on the atomic scale.Phys Rev B2006;73:165312

[91]

Ogata S,Tanaka M,Horikawa T.SiO2/Si interfaces on high-index surfaces: re-evaluation of trap densities and characterization of bonding structures.Appl Phys Lett2011;98:092906

[92]

Colinge JP,Floyd L.Low-temperature electron mobility in Trigate SOI MOSFETs.IEEE Electron Device Lett2006;27:120-2

[93]

Li YF.First-principles prediction of the ZnO morphology in the perovskite solar cell.J Phys Chem C2019;123:14164-72

[94]

Kresse G.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys Rev B Condens Matter1996;54:11169-86

[95]

Hutter J,Schiffmann F.cp2k: atomistic simulations of condensed matter systems.WIREs Comput Mol Sci2014;4:15-25

[96]

Dovesi R,Orlando R.Quantum-mechanical condensed matter simulations with CRYSTAL.WIREs Comput Mol Sci2018;8:e1360

[97]

Andolina CM.Highly transferable atomistic machine-learning potentials from curated and compact datasets across the periodic table.Digit Discov2023;2:1070-7

[98]

Bayerl D,Dwaraknath S.Convergence acceleration in machine learning potentials for atomistic simulations.Digit Discov2022;1:61-9

AI Summary AI Mindmap
PDF

37

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/