Recent advances and applications of machine learning in electrocatalysis

You Hu , Junhua Chen , Zheng Wei , Qiu He , Yan Zhao

Journal of Materials Informatics ›› 2023, Vol. 3 ›› Issue (3) : 18

PDF
Journal of Materials Informatics ›› 2023, Vol. 3 ›› Issue (3) :18 DOI: 10.20517/jmi.2023.23
Review

Recent advances and applications of machine learning in electrocatalysis

Author information +
History +
PDF

Abstract

Electrocatalysis plays an important role in the production of clean energy and pollution control. Researchers have made great efforts to explore efficient, stable, and inexpensive electrocatalysts. However, traditional trial and error experiments and theoretical calculations require a significant amount of time and resources, which limits the development speed of electrocatalysts. Fortunately, the rapid development of machine learning (ML) has brought new solutions to scientific problems and new paradigms to the development of electrocatalysts. The combination of ML with experimental and theoretical calculations has propelled significant advancements in electrocatalysis research, particularly in the areas of materials screening, performance prediction, and catalysis theory development. In this review, we present a comprehensive overview of the workflow and cutting-edge techniques of ML in the field of electrocatalysis. In addition, we discuss the diverse applications of ML in predicting performance, guiding synthesis, and exploring the theory of catalysis. Finally, we conclude the review with the challenges of ML in electrocatalysis.

Keywords

Machine learning / electrocatalysis / performance prediction

Cite this article

Download citation ▾
You Hu, Junhua Chen, Zheng Wei, Qiu He, Yan Zhao. Recent advances and applications of machine learning in electrocatalysis. Journal of Materials Informatics, 2023, 3(3): 18 DOI:10.20517/jmi.2023.23

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Seh ZW,Dickens CF,Nørskov JK.Combining theory and experiment in electrocatalysis: insights into materials design.Science2017;355:eaad4998

[2]

Brockway PE,Brand-correa LI.Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources.Nat Energy2019;4:612-21

[3]

Reymond JL.The chemical space project.Acc Chem Res2015;48:722-30

[4]

Walsh A.The quest for new functionality.Nat Chem2015;7:274-5

[5]

Agrawal A.Perspective: materials informatics and big data: realization of the “fourth paradigm” of science in materials science.APL Mater2016;4:053208

[6]

Rajagopal AK.Inhomogeneous electron gas.Phys Rev B1973;7:1912-9

[7]

Kohn W.Self-consistent equations including exchange and correlation effects.Phys Rev1965;140:A1133-8

[8]

Abraham FF.Computational statistical mechanics methodology, applications and supercomputing.Adv Phys1986;35:1-111

[9]

Yao N,Fu ZH.Applying classical, Ab Initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries.Chem Rev2022;122:10970-1021

[10]

Van der Ven A, Deng Z, Banerjee S, Ong SP. Rechargeable alkali-ion battery materials: theory and computation.Chem Rev2020;120:6977-7019

[11]

Li J,Yang H.AI applications through the whole life cycle of material discovery.Matter2020;3:393-432

[12]

Feldman K.The materials genome initiative at the national science foundation: a status report after the first year of funded research.JOM2014;66:336-44.

[13]

Tolle KM,Hey AJG.The fourth paradigm: data-intensive scientific discovery [point of view].Proc IEEE2011;99:1334-7

[14]

Jordan MI.Machine learning: trends, perspectives, and prospects.Science2015;349:255-60

[15]

Ghahramani Z.Probabilistic machine learning and artificial intelligence.Nature2015;521:452-9

[16]

Muratov EN,Sheridan RP.Correction: QSAR without borders.Chem Soc Rev2020;49:3525-64

[17]

Lyngby P.Data-driven discovery of 2D materials by deep generative models.npj Comput Mater2022;8:232

[18]

Butler KT,Cartwright H,Walsh A.Machine learning for molecular and materials science.Nature2018;559:547-55

[19]

Steinmann SN,Seh ZW.How machine learning can accelerate electrocatalysis discovery and optimization.Mater Horiz2023;10:393-406

[20]

Chen L,Chen A,Hu X.Targeted design of advanced electrocatalysts by machine learning.Chin J Catal2022;43:11-32

[21]

Mai H,Chen D,Caruso RA.Machine learning for electrocatalyst and photocatalyst design and discovery.Chem Rev2022;122:13478-515

[22]

Zhang X,Chen L,Zhou Z.Machine learning: a new paradigm in computational electrocatalysis.J Phys Chem Lett2022;13:7920-30

[23]

Samuel AL.Some studies in machine learning using the game of checkers.IBM J Res Dev2000;44:206-26

[24]

Mitchell T,Dejong G,Rosenbloom P.Machine learning.Annu Rev Comput Sci1990;4:417-33

[25]

Keith JA,Cheng B.Combining machine learning and computational chemistry for predictive insights into chemical systems.Chem Rev2021;121:9816-72 PMCID:PMC8391798

[26]

Luckenbach R.The beilstein handbook of organic chemistry: the first hundred years.J Chem Inf Comput Sci1981;21:82-3

[27]

Xu Y.Accomplishment and challenge of materials database toward big data.Chin Phys B2018;27:118901

[28]

Wei Z,Zhao Y.Machine learning for battery research.J Power Sources2022;549:232125

[29]

Tshitoyan V,Weston L.Unsupervised word embeddings capture latent knowledge from materials science literature.Nature2019;571:95-8

[30]

Kim E,Saunders A,Ceder G.Materials synthesis insights from scientific literature via text extraction and machine learning.Chem Mater2017;29:9436-44

[31]

Coley CW,Jensen KF.Machine learning in computer-aided synthesis planning.Acc Chem Res2018;51:1281-9

[32]

Raccuglia P,Adler PDF.Machine-learning-assisted materials discovery using failed experiments.Nature2016;533:73-6

[33]

Rahm E.Data cleaning: problems and current approaches.IEEE Data Eng Bull2000;23:3-13Available from: https://www.betterevaluation.org/sites/default/files/data_cleaning.pdf. [Last accessed on 29 Aug 2023]

[34]

Artrith N,Coudert FX.Best practices in machine learning for chemistry.Nat Chem2021;13:505-8

[35]

Young D,Venkatapathy R.Are the chemical structures in your QSAR correct?.QSAR Comb Sci2008;27:1337-45

[36]

Chu X,Krishnan S.Data cleaning: overview and emerging challenges. Proceedings of the 2016 International Conference on Management of Data. ACM; 2016. p. 2201-6.

[37]

Qin SJ.Advances and opportunities in machine learning for process data analytics.Comput Chem Eng2019;126:465-73

[38]

Ndung’u RN.Data preparation for machine learning modelling.Int J Comput Appl Technol Res2022;11:231-5

[39]

Hautamaki V,Franti P.Outlier detection using k-nearest neighbour graph. In: Proceedings of the 17th International Conference on Pattern Recognition, 2004; 2004 Aug 26; Cambridge, UK. IEEE; 2004. p. 430-3.

[40]

Muller E,Steinhausen U.OutRank: ranking outliers in high dimensional data. In: 2008 IEEE 24th International Conference on Data Engineering Workshop; 2008 Apr 07-12; Cancun, Mexico. IEEE; 2008. p. 600-3.

[41]

Do K,Phung D.Outlier detection on mixed-type data: an energy-based approach. In: Li J, Li X, Wang S, Li J, Sheng Q, editors. Advanced Data Mining and Applications. Cham: Springer; 2016. p. 111-25.

[42]

Tang B.A local density-based approach for outlier detection.Neurocomputing2017;241:171-80

[43]

Ioffe S. Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Francis B, David B, editors. Proceedings of the 32nd International Conference on Machine Learning. PMLR; 2015. p. 448-56. Available from: https://proceedings.mlr.press/v37/ioffe15.html. [Last accessed on 29 Aug 2023]

[44]

Xu Y.On Splitting Training and validation set: a comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning.J Anal Test2018;2:249-62 PMCID:PMC6373628

[45]

Joseph VR.SPlit: an optimal method for data splitting.Technometrics2022;64:166-76

[46]

Himanen L,Morooka EV.DScribe: library of descriptors for machine learning in materials science.Comput Phys Commun2020;247:106949

[47]

Isayev O,Toher C,Curtarolo S.Universal fragment descriptors for predicting properties of inorganic crystals.Nat Commun2017;8:15679 PMCID:PMC5465371

[48]

Rupp M,Müller KR.Fast and accurate modeling of molecular atomization energies with machine learning.Phys Rev Lett2012;108:058301

[49]

Carhart RE,Venkataraghavan R.Atom pairs as molecular features in structure-activity studies: definition and applications.J Chem Inf Comput Sci1985;25:64-73

[50]

Li S,Chen D,Nie Z.Encoding the atomic structure for machine learning in materials science.WIREs Comput Mol Sci2022;12:e1558

[51]

Mao J.Artificial neural networks for feature extraction and multivariate data projection.IEEE Trans Neural Netw1995;6:296-317

[52]

Schleider L,Qiang Z.A study of feature representation via neural network feature extraction and weighted distance for clustering.J Comb Optim2022;44:3083-105

[53]

Xie T.Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties.Phys Rev Lett2018;120:145301

[54]

Chen C,Zuo Y,Ong SP.Graph networks as a universal machine learning framework for molecules and crystals.Chem Mater2019;31:3564-72

[55]

Louis SY,Nasiri A.Graph convolutional neural networks with global attention for improved materials property prediction.Phys Chem Chem Phys2020;22:18141-8

[56]

Choudhary K.Atomistic line graph neural network for improved materials property predictions.npj Comput Mater2021;7:185

[57]

Chen C,Ye W,Deng Z.A critical review of machine learning of energy materials.Adv Energy Mater2020;10:1903242

[58]

Bellman RE.Adaptive control processes: a guided tour. Princeton University Press; 1961.

[59]

Kim B,Kim J.Inverse design of porous materials using artificial neural networks.Sci Adv2020;6:eaax9324 PMCID:PMC6941911

[60]

Back S,Tian N,Tran K.Convolutional neural network of atomic surface structures to predict binding energies for high-throughput screening of catalysts.J Phys Chem Lett2019;10:4401-8

[61]

Timoshenko J.“Inverting” X-ray absorption spectra of catalysts by machine learning in search for activity descriptors.ACS Catal2019;9:10192-211

[62]

Li Z,Xin H.An adaptive machine learning strategy for accelerating discovery of perovskite electrocatalysts.ACS Catal2020;10:4377-84

[63]

Sanchez-Lengeling B.Inverse molecular design using machine learning: generative models for matter engineering.Science2018;361:360-5

[64]

Song Y,Zhao Y.Computational discovery of new 2D materials using deep learning generative models.ACS Appl Mater Interfaces2021;13:53303-13

[65]

Zafari M,Umer M.Machine learning-based high throughput screening for nitrogen fixation on boron-doped single atom catalysts†.J Mater Chem A2020;8:5209-16

[66]

Davies DW,Walsh A.Data-driven discovery of photoactive quaternary oxides using first-principles machine learning.Chem Mater2019;31:7221-30

[67]

Stuke A,Rupp M.Chemical diversity in molecular orbital energy predictions with kernel ridge regression.J Chem Phys2019;150:204121

[68]

Wexler RB,Rappe AM.Chemical pressure-driven enhancement of the hydrogen evolving activity of Ni2P from nonmetal surface doping interpreted via machine learning.J Am Chem Soc2018;140:4678-83

[69]

Panapitiya G,Ren P,Li Y.Machine-learning prediction of CO adsorption in thiolated, Ag-alloyed Au nanoclusters.J Am Chem Soc2018;140:17508-14

[70]

Baghban A,Zokaee Ashtiani F.Bandgaps of noble and transition metal/ZIF-8 electro/catalysts: a computational study†.RSC Adv2020;10:22929-38 PMCID:PMC9054687

[71]

Mageed AK.Modeling photocatalytic hydrogen production from ethanol over copper oxide nanoparticles: a comparative analysis of various machine learning techniques.Biomass Conv Bioref2023;13:3319-27

[72]

Ouyang R,Ahmetcik E,Ghiringhelli LM.SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates.Phys Rev Mater2018;2:083802

[73]

Smith-miles KA.Cross-disciplinary perspectives on meta-learning for algorithm selection.ACM Comput Surv2009;41:1-25

[74]

Cohen-Shapira N.TRIO: task-agnostic dataset representation optimized for automatic algorithm selection. In: 2021 IEEE International Conference on Data Mining (ICDM); 2021 Dec 07-10; Auckland, New Zealand. IEEE; 2021. p. 81-90.

[75]

Shahoud S,Khalloof H,Hagenmeyer V.An extended meta learning approach for automating model selection in big data environments using microservice and container virtualizationz technologies.Int Thin2021;16:100432

[76]

Dyrmishi S,Sakr S.A decision support framework for autoML systems: a meta-learning approach. In: 2019 International Conference on Data Mining Workshops (ICDMW); 2019 Nov 08-11; Beijing, China. IEEE; 2019. p. 97-106.

[77]

Maher M. SmartML: a meta learning-based framework for automated selection and hyperparameter tuning for machine learning algorithms. Available from: https://openproceedings.org/2019/conf/edbt/EDBT19_paper_235.pdf.[Lastaccessed on 18 Oct 2023]

[78]

Dias LV,Nascimento ACA,Mello RF.ImageDataset2Vec: an image dataset embedding for algorithm selection.Expert Syst Appl2021;180:115053

[79]

Chale M,Weir J.Algorithm selection framework for cyber attack detection. In: Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning. 2020. p. 37-42.

[80]

Elrahman AA,Elshawi R.D-SmartML: a distributed automated machine learning framework. In: 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS); 2020 Nov 29 - Dec 01; Singapore. IEEE; 2020. p. 1215-8.

[81]

Ma J,Luo Y.Few-shot learning creates predictive models of drug response that translate from high-throughput screens to individual patients.Nat Cancer2021;2:233-44 PMCID:PMC8248912

[82]

Olier I,Bickerton GR.Meta-QSAR: a large-scale application of meta-learning to drug design and discovery.Mach Learn2018;107:285-311 PMCID:PMC6956898

[83]

Sun Y,Li Z.Fingerprinting diverse nanoporous materials for optimal hydrogen storage conditions using meta-learning.Sci Adv2021;7:eabg3983 PMCID:PMC8294760

[84]

Raschka S. Model evaluation, model selection, and algorithm selection in machine learning. arXiv. [Preprint.] November 11, 2020 [accessed 2023 August 29]. Available from: https://arxiv.org/abs/1811.12808.

[85]

Chicco D,Jurman G.The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation.PeerJ Comput Sci2021;7:e623 PMCID:PMC8279135

[86]

Hossin M.A review on evaluation metrics for data classification evaluations.Intl J Data Min Knowl Manag Process2015;5:1

[87]

Dener M,Orman A.STLGBM-DDS: an efficient data balanced DoS detection system for wireless sensor networks on big data environment.IEEE Access2022;10:92931-45

[88]

Che M.Nobel prize in chemistry 1912 to sabatier: organic chemistry or catalysis?.Catalysis Today2013;218-19:162-71

[89]

Logadottir A,Nørskov JK,Dahl S.The brønsted-evans-polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts.J Catal2001;197:229-31

[90]

Nørskov JK,Logadottir A.Universality in heterogeneous catalysis.J Catal2002;209:275-8

[91]

Mao Y,Wang H.Catalyst screening: refinement of the origin of the volcano curve and its implication in heterogeneous catalysis.Chin J Catal2015;36:1596-605

[92]

Zhong M,Min Y.Accelerated discovery of CO2 electrocatalysts using active machine learning.Nature2020;581:178-83

[93]

Jain A,Hautier G.Commentary: the materials project: a materials genome approach to accelerating materials innovation.APL Mater2013;1:011002

[94]

Liu X,Peng H,Chan K.Understanding trends in electrochemical carbon dioxide reduction rates.Nat Commun2017;8:15438 PMCID:PMC5458145

[95]

Park JW,Noh J.Bimetallic gold-silver nanostructures drive low overpotentials for electrochemical carbon dioxide reduction.ACS Appl Mater Interfaces2022;14:6604-14

[96]

Yeh JW,Lin SJ.Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes.Adv Eng Mater2004;6:299-303

[97]

Cantor B,Knight P.Microstructural development in equiatomic multicomponent alloys.Mater Sci Eng A2004;375-7:213-8

[98]

Mori K,Kamiuchi N,Kobayashi H.Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation.Nat Commun2021;12:3884 PMCID:PMC8222268

[99]

Wang D,Huang YC.Tailoring lattice strain in ultra-fine high-entropy alloys for active and stable methanol oxidation.Sci Chin Mater2021;64:2454-66

[100]

Li H,Zhao H.Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis.Nat Commun2020;11:5437 PMCID:PMC7595151

[101]

Chen ZW,Gariepy Z,Singh CV.High-throughput and machine-learning accelerated design of high entropy alloy catalysts.Trends Chem2022;4:577-9

[102]

Batchelor TA,Winther SH,Jacobsen KW.High-entropy alloys as a discovery platform for electrocatalysis.Joule2019;3:834-45

[103]

Pedersen JK,Bagger A.High-entropy alloys as catalysts for the CO2 and CO reduction reactions.ACS Catal2020;10:2169-76

[104]

Sun M.Flexible modulations on selectivity of syngas formation via CO2 reduction on atomic catalysts.Nano Energy2022;99:107382

[105]

Wang X,Li Y.First-principles based machine learning study of oxygen evolution reactions of perovskite oxides using a surface center-environment feature model.Appl Surf Sci2020;531:147323

[106]

Faber F,von Lilienfeld OA.Crystal structure representations for machine learning models of formation energies.Int J Quantum Chem2015;115:1094-101

[107]

Seko A,Nakayama K,Tanaka I.Representation of compounds for machine-learning prediction of physical properties.Phys Rev B2017;95:144110

[108]

Schmidt J,Borlido P,Botti S.Predicting the thermodynamic stability of solids combining density functional theory and machine learning.Chem Mater2017;29:5090-103

[109]

Ward L,Krishna A.Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations.Phys Rev B2017;96:024104

[110]

Henkelman G,Jónsson H.A climbing image nudged elastic band method for finding saddle points and minimum energy paths.J Chem Physs2000;113:9901-4

[111]

Li H,Davey K.Data-driven machine learning for understanding surface structures of heterogeneous catalysts.Angew Chem Int Ed Engl2023;62:e202216383

[112]

Kolsbjerg EL,Hammer B.Neural-network-enhanced evolutionary algorithm applied to supported metal nanoparticles.Phys Rev B2018;97:195424

[113]

Yoon J,Raju RK.Deep reinforcement learning for predicting kinetic pathways to surface reconstruction in a ternary alloy.Mach Learn Sci Technol2021;2:045018

[114]

Ulissi ZW,Tsai C.Automated discovery and construction of surface phase diagrams using machine learning.J Phys Chem Lett2016;7:3931-5

[115]

Vulcu A,Porav AS.Low-platinum catalyst based on sulfur doped graphene for methanol oxidation in alkaline media.Mater Today Energy2021;19:100588

[116]

Thanikaivelan P,Raghava Rao J.Application of quantum chemical descriptor in quantitative structure activity and structure property relationship.Chem Phys Lett2000;323:59-70

[117]

Dearden JC,Kaiser KLE.How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR).SAR QSAR Environ Res2009;20:241-66

[118]

Wu W,Wang Z.PINK1-parkin-mediated mitophagy protects mitochondrial integrity and prevents metabolic stress-induced endothelial injury.PLoS One2015;10:e0132499 PMCID:PMC4498619

[119]

Safder U,Kim D,Yoo C.Quantitative structure-property relationship (QSPR) models for predicting the physicochemical properties of polychlorinated biphenyls (PCBs) using deep belief network.Ecotoxicol Environ Saf2018;162:17-28

[120]

Parker AJ,Barnard AS.Classification of platinum nanoparticle catalysts using machine learning.J Appl Phys2020;128:014301

[121]

Esterhuizen JA,Linic S.Theory-guided machine learning finds geometric structure-property relationships for chemisorption on subsurface alloys.Chem2020;6:3100-17

[122]

Ebikade EO,Samulewicz N,Vlachos D.Active learning-driven quantitative synthesis-structure-property relations for improving performance and revealing active sites of nitrogen-doped carbon for the hydrogen evolution reaction†.React Chem Eng2020;5:2134-47

[123]

Wang B.Main descriptors to correlate structures with the performances of electrocatalysts.Angew Chem Int Ed Engl2022;61:e202111026

[124]

Ghiringhelli LM,Levchenko SV,Scheffler M.Big data of materials science: critical role of the descriptor.Phys Rev Lett2015;114:105503

[125]

De S,Csányi G.Comparing molecules and solids across structural and alchemical space†.Phys Chem Chem Phys2016;18:13754-69

[126]

Hinuma Y,Toyao T,Shimizu KI.Factors determining surface oxygen vacancy formation energy in ternary spinel structure oxides with zinc†.Phys Chem Chem Phys2021;23:23768-77

[127]

Liu X,Wang W.Transition metal and N doping on AlP monolayers for bifunctional oxygen electrocatalysts: density functional theory study assisted by machine learning description.ACS Appl Mater Interfaces2022;14:1249-59

[128]

Liu X,Xiao W.Strain engineering in single-atom catalysts: GaPS4 for bifunctional oxygen reduction and evolution†.Inorg Chem Front2022;9:4272-80

[129]

Jäger MOJ,Federici Canova F,Foster AS.Machine learning hydrogen adsorption on nanoclusters through structural descriptors.npj Comput Mater2018;4:37

[130]

Weng B,Zhu R.Simple descriptor derived from symbolic regression accelerating the discovery of new perovskite catalysts.Nat Commun2020;11:3513 PMCID:PMC7360597

[131]

Fung V,Wu Z.Descriptors for hydrogen evolution on single atom catalysts in nitrogen-doped graphene.J Phys Chem C2020;124:19571-8

[132]

Hammer B.Electronic factors determining the reactivity of metal surfaces.Surf Sci1995;343:211-20

[133]

Nørskov JK,Rossmeisl J.Towards the computational design of solid catalysts.Nat Chem2009;1:37-46

[134]

Xu W,Reuter K.Data-driven descriptor engineering and refined scaling relations for predicting transition metal oxide reactivity.ACS Catal2021;11:734-42

[135]

Andersen M.Adsorption enthalpies for catalysis modeling through machine-learned descriptors.Acc Chem Res2021;54:2741-9

[136]

Zafari M,Umer M,Kim KS.First principles and machine learning based superior catalytic activities and selectivities for N2 reduction in MBenes, defective 2D materials and 2D π-conjugated polymer-supported single atom catalysts†.J Mater Chem A2021;9:9203-13

[137]

Wan X,Niu H,Zhang Z.Revealing the oxygen reduction/evolution reaction activity origin of carbon-nitride-related single-atom catalysts: quantum chemistry in artificial intelligence.Chem Eng J2022;440:135946

[138]

Behler J.Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations.Phys Chem Chem Phys2011;13:17930-55

[139]

Hohenberg P.Inhomogeneous electron gas.Phys Rev1964;136:B864

[140]

Deringer VL,Csányi G.Machine learning interatomic potentials as emerging tools for materials science.Adv Mater2019;31:1902765

[141]

Vink RLC,van der Weg WF.Raman spectra and structure of amorphous Si.Phys Rev B2001;63:115210

[142]

Artrith N.An implementation of artificial neural-network potentials for atomistic materials simulations: performance for TiO2.Comput Mater Sci2016;114:135-50

[143]

Zhang Y,Jiang B.Embedded atom neural network potentials: efficient and accurate machine learning with a physically inspired representation.J Phys Chem Lett2019;10:4962-7

[144]

Schütt KT,Gastegger M. Equivariant message passing for the prediction of tensorial properties and molecular spectra. arXiv. [Preprint.] June 7, 2021 [accessed 2023 August 29]. Available from: https://arxiv.org/abs/2102.03150.

[145]

Behler J.Four generations of high-dimensional neural network potentials.Chem Rev2021;121:10037-72

[146]

Singraber A,Dellago C.Library-based LAMMPS implementation of high-dimensional neural network potentials.J Chem Theory Comput2019;15:1827-40

[147]

Kocer E,Behler J.Neural network potentials: a concise overview of methods.Annu Rev Phys Chem2022;73:163-86

[148]

Zitnick CL,Kolluru A.Spherical channels for modeling atomic interactions.Adv Neural Inf Process Syst2022;35:8054-67Available from: https://proceedings.neurips.cc/paper_files/paper/2022/file/3501bea1ac61fedbaaff2f88e5fa9447-Paper-Conference.pdf. [Last accessed on 29 Aug 2023]

[149]

Batzner S,Sun L.E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials.Nat Commun2022;13:2453 PMCID:PMC9068614

[150]

Byggmästar J,Djurabekova F.Gaussian approximation potentials for body-centered-cubic transition metals.Phys Rev Mater2020;4:093802

[151]

Bartók AP,Kondor R.Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons.Phys Rev Lett2010;104:136403

[152]

Balabin RM.Support vector machine regression (LS-SVM) - an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data?.Phys Chem Chem Phys2011;13:11710-8

[153]

Shapeev AV.Moment tensor potentials: a class of systematically improvable interatomic potentials.Multiscale Model Sim2016;14:1153-73

[154]

Sauceda HE,Chmiela S,Tkatchenko A.Molecular force fields with gradient-domain machine learning (GDML): comparison and synergies with classical force fields.J Chem Phys2020;153:124109

[155]

Artrith N.Understanding the composition and activity of electrocatalytic nanoalloys in aqueous solvents: a combination of DFT and accurate neural network potentials.Nano Lett2014;14:2670-6

[156]

Chen L,Hu X.A universal machine learning framework for electrocatalyst innovation: a case study of discovering alloys for hydrogen evolution reaction.Adv Funct Mater2022;32:2208418

[157]

Li C,Jiang B.First-principles surface reaction rates by ring polymer molecular dynamics and neural network potential: role of anharmonicity and lattice motion.Chem Sci2023;14:5087-98 PMCID:PMC10189860

[158]

Behler J.Erratum: “Perspective: machine learning potentials for atomistic simulations” [J. Chem. Phys. 145, 170901 (2016)].J Chem Phys2016;145:170901

[159]

Gilpin LH,Yuan BZ,Specter M.Explaining explanations: an overview of interpretability of machine learning. In: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA); 2018 Oct 1-3; Turin, Italy. IEEE; 2019. p. 80-9.

[160]

Iwasaki Y,Stanev V.Identification of advanced spin-driven thermoelectric materials via interpretable machine learning.npj Comput Mater2019;5:103

[161]

Linardatos P,Kotsiantis S.Explainable AI: a review of machine learning interpretability methods.Entropy2020;23:18 PMCID:PMC7824368

[162]

Allen AEA.Machine learning of material properties: predictive and interpretable multilinear models.Sci Adv2022;8:eabm7185 PMCID:PMC9075804

[163]

Yano J,Gregoire J.The case for data science in experimental chemistry: examples and recommendations.Nat Rev Chem2022;6:357-70

AI Summary AI Mindmap
PDF

92

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/