Effects of solutes on thermodynamic properties of (TMZrU)C (TM = Ta, Y) medium-entropy carbides: a first-principles study

Ya Liu , Yonghong Lu , William Yi Wang , Jia Li , Ying Zhang , Junlei Yin , Xiaoqiang Pan , Xingyu Gao , Yong Chen , Haifeng Song , Jinshan Li

Journal of Materials Informatics ›› 2023, Vol. 3 ›› Issue (3) : 17

PDF
Journal of Materials Informatics ›› 2023, Vol. 3 ›› Issue (3) :17 DOI: 10.20517/jmi.2023.19
Research Article

Effects of solutes on thermodynamic properties of (TMZrU)C (TM = Ta, Y) medium-entropy carbides: a first-principles study

Author information +
History +
PDF

Abstract

High entropy carbide ceramics have garnered significant interest as a novel class of ultra-high temperature and superhard metallic materials. In the present work, a comparative investigation was conducted for the first time on the stability, mechanical, and thermodynamic properties of two medium entropy carbides (MECs), (TaZrU)C and (YZrU)C, using high-throughput first-principles calculations. Additionally, data from groups IV and V transition metal monocarbides were employed for comparison. The temperature-dependent thermodynamic properties, including bulk modulus (B), constant volume/constant pressure heat capacity (Cv/Cp), Gibbs free energy, volume, entropy, and thermal conductivity, were evaluated using the Debye-Gruneisen model. The results demonstrate that (TaZrU)C and (YZrU)C exhibit similar trends in their thermodynamic properties, with (YZrU)C displaying slightly superior performance as the temperature rises. This work provides valuable insights into the design of innovative high entropy fuels, holding significant implications for the advancement of MEC ceramic fuels in advanced nuclear power systems and nuclear thermal propulsion systems.

Keywords

Medium entropy carbide ceramics / first-principles calculations / thermodynamic properties / transition metal monocarbides / nuclear thermal propulsion (NTP) systems

Cite this article

Download citation ▾
Ya Liu, Yonghong Lu, William Yi Wang, Jia Li, Ying Zhang, Junlei Yin, Xiaoqiang Pan, Xingyu Gao, Yong Chen, Haifeng Song, Jinshan Li. Effects of solutes on thermodynamic properties of (TMZrU)C (TM = Ta, Y) medium-entropy carbides: a first-principles study. Journal of Materials Informatics, 2023, 3(3): 17 DOI:10.20517/jmi.2023.19

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nisar A,Boesl B.A perspective on challenges and opportunities in developing high entropy-ultra high temperature ceramics.Ceram Int2020;46:25845-53

[2]

Akrami S,Fuji M.High-entropy ceramics: review of principles, production and applications.Mater Sci Eng R Rep2021;146:100644

[3]

Demirskyi D,Suzuki TS,Yoshimi K.High-temperature flexural strength performance of ternary high-entropy carbide consolidated via spark plasma sintering of TaC, ZrC and NbC.Scr Mater2019;164:12-6

[4]

Golla BR,Basu B.Review on ultra-high temperature boride ceramics.Prog Mater Sci2020;111:100651

[5]

Peters AB,Nagle DC.Reactive two-step additive manufacturing of ultra-high temperature carbide ceramics.Addit Manuf2023;61:103318

[6]

Ni D,Zhang J.Advances in ultra-high temperature ceramics, composites, and coatings.J Adv Ceram2022;11:1-56

[7]

Dai F,Sun Y,Xiang H.Grain boundary segregation induced strong UHTCs at elevated temperatures: a universal mechanism from conventional UHTCs to high entropy UHTCs.J Mater Sci Technol2022;123:26-33

[8]

Guo R,Shen P.Ultra-fast high-temperature synthesis and densification of high-entropy diborides and diboride-carbide ceramics.J Eur Ceram Soc2023;43:5763-73

[9]

Morris BA,Seidel GD.Effects of oxidation on the effective thermomechanical properties of porous ultra-high temperature ceramics in compression via computational micromechanics and MPM.Open Ceram2023;15:100382

[10]

Oses C,Curtarolo S.High-entropy ceramics.Nat Rev Mater2020;5:295-309

[11]

Wei X,Li F,Liang Y.High entropy carbide ceramics from different starting materials.J Eur Ceram Soc2019;39:2989-94

[12]

Zhou J,Zhang F,Lei L.High-entropy carbide: a novel class of multicomponent ceramics.Ceram Int2018;44:22014-8

[13]

Yan X,Lu Y,Nastasi M.(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity.J Am Ceram Soc2018;101:4486-91

[14]

Zeng Y,Xiong X.Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000 °C.Nat Commun2017;8:15836 PMCID:PMC5474735

[15]

Csanádi T,Reece MJ.Strength enhancement and slip behaviour of high-entropy carbide grains during micro-compression.Sci Rep2019;9:10200 PMCID:PMC6629678

[16]

Wang F,Wang T.Irradiation damage in (Zr0.25Ta0.25Nb0.25Ti0.25)C high-entropy carbide ceramics.Acta Mater2020;195:739-49

[17]

Yeh J,Lin S.Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes.Adv Eng Mater2004;6:299-303

[18]

Ma J.High entropy energy storage materials: synthesis and application.J Energy Storage2023;66:107419

[19]

Ying T,Qi Y,Hosono H.High entropy van der Waals materials.Adv Sci2022;9:e2203219 PMCID:PMC9596826

[20]

Moghaddam A, Fereidonnejad R, Cabot A. Semi-ordered high entropy materials: the case of high entropy intermetallic compounds.J Alloys Compd2023;960:170802

[21]

Yao G,Li P.Electronic structures and strengthening mechanisms of superhard high-entropy diborides.Rare Met2023;42:614-28

[22]

Sarker P,Toher C.High-entropy high-hardness metal carbides discovered by entropy descriptors.Nat Commun2018;9:4980 PMCID:PMC6255778

[23]

Yao G,Zou C.Local orders, lattice distortions, and electronic structure dominated mechanical properties of (ZrHfTaM1M2)C (M = Nb, Ti, V).J Am Ceram Soc2022;105:4260-76

[24]

Dai F,Sun Y,Zhou Y.Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential.J Mater Sci Technol2020;43:168-74

[25]

Kaufmann K,Mellor WM.Discovery of high-entropy ceramics via machine learning.npj Comput Mater2020;6:42

[26]

Chen L,Yao X.High-entropy alloy catalysts: high-throughput and machine learning-driven design.J Mater Inf2022;2:19

[27]

Zhou Y,Wang D.New trends in additive manufacturing of high-entropy alloys and alloy design by machine learning: from single-phase to multiphase systems.J Mater Inf2022;2:18

[28]

Chen Z.Data-driven design of eutectic high entropy alloys.J Mater Inf2023;3:10

[29]

Pak AY,Gumovskaya AA.Machine learning-driven synthesis of TiZrNbHfTaC5 high-entropy carbide.npj Comput Mater2023;9:7

[30]

Castle E,Grasso S,Reece M.Processing and properties of high-entropy ultra-high temperature carbides.Sci Rep2018;8:8609 PMCID:PMC5988827

[31]

Dusza J,Girman V.Microstructure of (Hf-Ta-Zr-Nb)C high-entropy carbide at micro and nano/atomic level.J Eur Ceram Soc2018;38:4303-7

[32]

Xiong K,Zhang S.Pressure and temperature effects on (TiZrTa)C medium-entropy carbide from first-principles.J Mater Res Technol2023;23:2288-300

[33]

Jin C,Guo L.A DFT insight into the mechanical, electronic and thermodynamic properties of (TiZrHf)C medium-entropy carbide ceramic.Results Phys2022;35:105341

[34]

Demirskyi D,Yoshimi K.Synthesis and high-temperature properties of medium-entropy (Ti,Ta,Zr,Nb)C using the spark plasma consolidation of carbide powders.Open Ceram2020;2:100015

[35]

Demirskyi D,Suzuki TS,Vasylkiv O.High-temperature toughening in ternary medium-entropy (Ta1/3Ti1/3Zr1/3)C carbide consolidated using spark-plasma sintering.J Asian Ceram Soc2020;8:1262-70

[36]

Peng C,He Y.A novel non-stoichiometric medium-entropy carbide stabilized by anion vacancies.J Mater Sci Technol2020;51:161-6

[37]

Deng H,Wang M.A nanocrystalline AlCoCuNi medium-entropy alloy with high thermal stability via entropy and boundary engineering.Mater Sci Eng A2020;774:138925

[38]

Chen H,Dai F.High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C.J Mater Sci Technol2019;35:1700-5

[39]

Peng C,Wang M.Diffusion-controlled alloying of single-phase multi-principal transition metal carbides with high toughness and low thermal diffusivity.Appl Phys Lett2019;114:011905

[40]

Wang Y,Zhang H,Reece MJ.Enhanced Hardness in high-entropy carbides through atomic randomness.Adv Theory Simul2020;3:2000111

[41]

Ye B,Chu Y.High-temperature oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics in air.J Am Ceram Soc2020;103:500-7

[42]

Wang Y,Zhang B.The role of multi-elements and interlayer on the oxidation behaviour of (Hf-Ta-Zr-Nb)C high entropy ceramics.Corros Sci2020;176:109019

[43]

Levack D J,Jennings T.Evolution of low enriched uranium nuclear thermal propulsion vehicle and engine design. In: AIAA Propulsion and Energy 2019 Forum; 2019 Aug 19-22; Indianapolis, IN, USA. American Institute of Aeronautics and Astronautics, Inc.; 2019. p. 3943.

[44]

Reynolds CB,Joyner CR,Levack DJ.Applications of nuclear thermal propulsion to lunar architectures. In: AIAA Propulsion and Energy 2019 Forum; 2019 Aug 19-22; Indianapolis, IN, USA. American Institute of Aeronautics and Astronautics, Inc.; 2019. p. 4032.

[45]

Ji Y,Sun J.Thermal performance optimization of a fuel element in particle bed reactors for nuclear thermal propulsion.Nucl Eng Des2019;355:110316

[46]

Reynolds CB,Kokan TS,Muzek BJ.Mars opposition missions using nuclear thermal propulsion. In: AIAA Propulsion and Energy 2020 Forum; 2020 Aug 24-28; virtual event. American Institute of Aeronautics and Astronautics, Inc.; 2020. p. 3850.

[47]

Burns D. Nuclear thermal propulsion reactor materials. In: Nuclear Materials. IntechOpen; 2021. Available from: https://www.intechopen.com/chapters/71396. [Last accessed on 16 Aug 2023]

[48]

Lin CS. Design and analysis of a 250 MW plate-fuel reactor for nuclear thermal propulsion. Available from: https://www.osti.gov/biblio/1638498. [Last accessed on 15 Aug 2023]

[49]

Thody A. Irradiation capsule development for composite fuels for nuclear thermal propulsion. Available from: https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/6395wd417. [Last accessed on 15 Aug 2023]

[50]

Searight WT,Werner JE,Lenox KE.Subscale maturation of advanced reactor technologies (SMART): a path forward for nuclear thermal propulsion fuel and reactor development.Prog Nucl Energy2022;153:104432

[51]

Wang SB, Ma Y, Guo SM, Xie QL. Comparation and analysis of nuclear thermal propulsion reactor fuel. Manned Spaceflight 2018;24:784-95. (in Chinese). Available from: https://www.cnki.net/kcms/doi/10.16329/j.cnki.zrht.2018.06.012.html. [Last accessed on 15 Aug 2023].

[52]

Farhadizadeh AR.Mechanical, structural, and thermodynamic properties of TaC-ZrC ultra-high temperature ceramics using first principle methods.Mater Res Express2020;7:036502

[53]

Tsuppayakorn-aek P,Sukmas W,Bovornratanaraks T.Thermodynamic stability and superconductivity of tantalum carbides from first-principles cluster expansion and isotropic Eliashberg theory.Comput Mater Sci2022;202:111004

[54]

Di Y,Wang J.New insights into the mechanical and thermal properties of UN1-xCx from first-principles calculations.J Nucl Mater2022;571:153991

[55]

Gökbulut M,Bölükdemir MH.Analytical study of the heat capacity and entropy of ZrM (M=N and C) compounds.Int J Mod Phys B2023;2450276

[56]

He R,Han T.Elasticity, mechanical and thermal properties of polycrystalline hafnium carbide and tantalum carbide at high pressure.J Eur Ceram Soc2022;42:5220-8

[57]

Yang XY,Zheng FW.Mechanical, electronic, and thermodynamic properties of zirconium carbide from first-principles calculations.Chin Phys B2015;24:116301

[58]

Pelaccio DG,Butt DP.A review of carbide fuel corrosion for nuclear thermal propulsion applications.Am Inst Phys1994;301:905-18

[59]

Wu XZ,Guo X.Study on preparation technology and performance mechanism of multi-component (U,Zr,Nb)C fuel.Sci Technol At Energy2023;9:1-9(in Chinese) Available from: http://kns.cnki.net/kcms/detail/11.2044.tl.20230626.1905.008.html. [Last accessed on 15 Aug 2023]

[60]

Butt DP.The U-Zr-C ternary phase diagram above 2473 K.J Am Ceram Soc1993;76:1409-19

[61]

Bourgeois L,Lemaignan C.Factors governing microstructure development of Cr2O3-doped UO2 during sintering.J Nucl Mater2001;297:313-26

[62]

Koroteev AS. Nuclear propulsion system application in the space exploration. In: The 10th International Burn and Combustion Summit (2003).

[63]

Tian F,Gao X,Song HF.Erratum: “a structural modeling approach to solid solutions based on the similar atomic environment” [J. Chem. Phys. 153, 034101 (2020)].J Chem Phys2020;153:034101

[64]

Song H,Hu Q.Local lattice distortion in high-entropy alloys.Phys Rev Mater2017;1:023404

[65]

Kresse G.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys Rev B1996;54:11169-86

[66]

Blöchl PE.Projector augmented-wave method.Phys Rev B1994;50:17953-79

[67]

Perdew JP,Ernzerhof M.Generalized gradient approximation made simple.Phys Rev Lett1996;77:3865-8

[68]

Monkhorst HJ.Special points for Brillouin-zone integrations.Phys Rev B1976;13:5188-92

[69]

Methfessel M.High-precision sampling for Brillouin-zone integration in metals.Phys Rev B1989;40:3616-21

[70]

Blöchl PE,Andersen OK.Improved tetrahedron method for Brillouin-zone integrations.Phys Rev B1994;49:16223-33

[71]

Murnaghan FD.The Compressibility of media under extreme pressures.Proc Natl Acad Sci U S A1944;30:244-7 PMCID:PMC1078704

[72]

Nakashima PN,Etheridge J.The bonding electron density in aluminum.Science2011;331:1583-6

[73]

Momma K.VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data.J Appl Cryst2011;44:1272-6

[74]

Ma D,Körmann F,Raabe D.Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one.Acta Mater2015;100:90-7

[75]

Song H.Modified mean-field potential approach to thermodynamic properties of a low-symmetry crystal: beryllium as a prototype.Phys Rev B2007;75:245126

[76]

Wang Y.Mean-field potential approach to thermodynamic properties of metal: Al as a prototype.Phys Rev B2000;62:196-202

[77]

Wang Y,Liu Y.First-principles study of the role of surface in the heavy-fermion compound CeRh2Si2.Phys Rev B2021;103:165140

[78]

Wu J,Xian J,Lin D.Structural and thermodynamic properties of the high-entropy alloy AlCoCrFeNi based on first-principles calculations.Front Mater2020;7:590143

[79]

Wu J,Liu Y.First-principles study on the electronic structure transition of β-UH3 under high pressure.Matter Radiat Extrem2022;7:058402

[80]

Birch F.Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300°K.J Geophys Res1978;83:1257-68

[81]

Ye B,Nguyen MC,Wang C.First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C high-entropy ceramics.Acta Mater2019;170:15-23

[82]

Jiang S,Fan T,Chen X.Elastic and thermodynamic properties of high entropy carbide (HfTaZrTi)C and (HfTaZrNb)C from ab initio investigation.Ceram Int2020;46:15104-12

[83]

Maibam J,Bhattacharjee R,Brojen Singh R.Electronic structure and elastic properties of scandium carbide and yttrium carbide: a first principles study.Phys B Condens Matter2011;406:4041-5

[84]

Korir K,Makau N.First-principle calculations of the bulk properties of 4d transition metal carbides and nitrides in the rocksalt, zincblende and wurtzite structures.Diam Relat Mater2011;20:157-64

[85]

Shi H,Li S,Wang B.Electronic structures and mechanical properties of uranium monocarbide from first-principles LDA + U and GGA + U calculations.Phys Lett A2009;373:3577-81

[86]

Mei Z,Yacout AM,Gao Y.First-principles study of the surface properties of uranium carbides.J Nucl Mater2020;542:152257

[87]

Isaev EI,Abrikosov IA.Phonon related properties of transition metals, their carbides, and nitrides: a first-principles study.J Appl Phys2007;101:123519

[88]

Zhao Y,Ma S.A hexagonal close-packed high-entropy alloy: the effect of entropy.Mater Des2016;96:10-5

[89]

Wang Z,Yang Y.Atomic-size and lattice-distortion effects in newly developed high-entropy alloys with multiple principal elements.Intermetallics2015;64:63-9

[90]

Viennois R,Popescu C.Crystal structure, lattice dynamics, and thermodynamic properties of a thermoelectric orthorhombic BaCu2Se2 compound.J Phys Chem C2020;124:13627-38

[91]

Wen T,Nguyen MC,Chu Y.Thermophysical and mechanical properties of novel high-entropy metal nitride-carbides.J Am Ceram Soc2020;103:6475-89

[92]

Watari K.High thermal conductivity materials.MRS Bull2001;26:440-4

[93]

Aliakbari A.Structural, elastic, electronic, thermal, and phononic properties of yttrium carbide: first-principles calculations.Mater Chem Phys2021;270:124744

[94]

Zhang P,Chen F,Wu Y.Stability, mechanical, and thermodynamic behaviors of (TiZrHfTaM)C (M = Nb, Mo, W, V, Cr) high-entropy carbide ceramics.J Alloy Compd2022;903:163868

[95]

Mankad VH.Thermodynamic properties of nuclear material uranium carbide using density functional theory.J Therm Anal Calorim2016;124:11-20

[96]

Iikubo S,Hasebe M.First-principles calculations of the specific heats of cubic carbides and nitrides.Mater Trans2010;51:574-7

AI Summary AI Mindmap
PDF

62

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/