Machine learning accelerated discovery of high transmittance in (K0.5Na0.5)NbO3-based ceramics
Bowen Ma , Fangyuan Yu , Ping Zhou , Xiao Wu , Chunlin Zhao , Cong Lin , Min Gao , Tengfei Lin , Baisheng Sa
Journal of Materials Informatics ›› 2023, Vol. 3 ›› Issue (2) : 13
Machine learning accelerated discovery of high transmittance in (K0.5Na0.5)NbO3-based ceramics
High optical transmittance (T%) has always been an important indicator of transparent-ferroelectric ceramics for optoelectronic coupling. However, the pathway of pursuing high transparency has been at the experimental trial-and-error stage over the past decades, manifesting major drawbacks of being time-consuming and resource-wasting. The present work introduces a machine learning (ML) accelerated development of highly transparent-ferroelectrics by taking potassium-sodium niobate (KNN)-based ceramics as the model material. It is highlighted that by using a small data set of 118 sample data and four key features, we predict the T% of un-synthesized KNN-based ceramics and evaluate the importance of key features. Meanwhile, the screened (K0.5Na0.5)0.956Tb0.004Ba0.04NbO3 ceramics were successfully realized by the conventional solid-state synthesis, and the experimental measured T% is in full agreement with the predicted results, exhibiting a satisfactory high T% of ~78% at 800 nm. In addition, ML is also used to explore the best experimental parameters, and the prediction results of T% are particularly sensitive to changes in sintering temperature (ST). Eventually, the predicted optimal ST is highly consistent with the experimental one. This study constructs a new avenue for exploring high T% ferroelectric KNN ceramics based on ML, ascertaining optimal process parameters, and guiding the development of other transparent-ferroelectrics in optoelectronic fields.
Machine learning / KNN-based ceramics / transmittance / sintering temperature
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
/
| 〈 |
|
〉 |