Synergizing ontologies and graph databases for highly flexible materials-to-device workflow representations

Max Dreger , Mohammad J. Eslamibidgoli , Michael H. Eikerling , Kourosh Malek

Journal of Materials Informatics ›› 2023, Vol. 3 ›› Issue (1) : 2

PDF
Journal of Materials Informatics ›› 2023, Vol. 3 ›› Issue (1) :2 DOI: 10.20517/jmi.2023.01
Research Article

Synergizing ontologies and graph databases for highly flexible materials-to-device workflow representations

Author information +
History +
PDF

Abstract

The escalating adoption of high-throughput methods in applied materials science dramatically increases the amount of generated data and allows for the deployment and use of sophisticated data-driven methods. To exploit the full potential of these accelerated approaches, the generated data need to be managed, preserved and shared. The heterogeneity of such data calls for highly flexible models to represent the data from fabrication workflows, measurements and simulations. We propose the use of a native graph database to store the data instead of relying on rigid relational data models. To develop a flexible and extendable data model, we create an ontology that serves as the blueprint of the data model. The Python framework Django is used to enable seamless integration into the virtual materials intelligence platform VIMI. The Django framework relies on the Object Graph Mapper neomodel to create a mapping between database classes and Python objects. The model can store the whole bandwidth of the data from fabrication to simulation data. Implementing the database into a platform will encourage researchers to share data while profiting from rich and highly curated data to accelerate their research.

Keywords

FAIR / energy materials / fabrication workflow optimization / ontologies / graph databases

Cite this article

Download citation ▾
Max Dreger, Mohammad J. Eslamibidgoli, Michael H. Eikerling, Kourosh Malek. Synergizing ontologies and graph databases for highly flexible materials-to-device workflow representations. Journal of Materials Informatics, 2023, 3(1): 2 DOI:10.20517/jmi.2023.01

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Malek A,Mokhtari M,Eikerling MH.Virtual materials intelligence for design and discovery of advanced electrocatalysts.Chemphyschem2019;20:2946-55

[2]

Maier WF,Sieg S.Combinatorial and high-throughput materials science.Angew Chem Int Ed Engl2007;46:6016-67

[3]

Xiang XD,Briceño G.A combinatorial approach to materials discovery.Science1995;268:1738-40

[4]

Koinuma H.Combinatorial solid-state chemistry of inorganic materials.Nat Mater2004;3:429-38

[5]

Spivack JL,Whisenhunt DW.Combinatorial discovery of metal co-catalysts for the carbonylation of phenol.Appl Catal A-Gen2003;254:5-25

[6]

Curtarolo S,Nardelli MB,Sanvito S.The high-throughput highway to computational materials design.Nat Mater2013;12:191-201

[7]

Martin R. Electronic structure: basic theory and practical methods. Cambridge University Press; 2004.

[8]

Ceder G,Sadoway DR,Jang Y.Identification of cathode materials for lithium batteries guided by first-principles calculations.Nature1998;392:694-6

[9]

Jóhannesson GH,Ruban AV,Jacobsen KW.Combined electronic structure and evolutionary search approach to materials design.Phys Rev Lett2002;88:255506

[10]

Stucke DP.Predictions of new crystalline states for assemblies of nanoparticles:  perovskite analogues and 3-D arrays of self-assembled nanowires.Nano Lett2003;3:1183-6

[11]

Curtarolo S,Persson K,Ceder G.Predicting crystal structures with data mining of quantum calculations.Phys Rev Lett2003;91:135503

[12]

Morgan D,Curtarolo S.High-throughput and data mining with ab initio methods.Meas Sci Technol2005;16:296-301

[13]

Curtarolo S,Ceder G.Accuracy of ab initio methods in predicting the crystal structures of metals: a review of 80 binary alloys.Calphad2005;29:163-211

[14]

Boussie TR,Goh C.A fully integrated high-throughput screening methodology for the discovery of new polyolefin catalysts: discovery of a new class of high temperature single-site group (IV) copolymerization catalysts.J Am Chem Soc2003;125:4306-17

[15]

Potyrailo RA,Morris WG.Development of combinatorial chemistry methods for coatings: high-throughput adhesion evaluation and scale-up of combinatorial leads.J Comb Chem2003;5:472-8

[16]

Wagner J,Du X,Hauch JA.The evolution of materials acceleration platforms: toward the laboratory of the future with AMANDA.J Mater Sci2021;56:16422-46

[17]

Aspuru-Guzik A. Materials acceleration platform: accelerating advanced energy materials discovery by integrating high-throughput methods and artificial intelligence. In. Mission Innovation; 2018.

[18]

Attia PM,Jin N.Closed-loop optimization of fast-charging protocols for batteries with machine learning.Nature2020;578:397-402

[19]

Tabor DP,Saikin SK.Accelerating the discovery of materials for clean energy in the era of smart automation.Nat Rev Mater2018;3:5-20

[20]

Burger B,Gusev VV.A mobile robotic chemist.Nature2020;583:237-41

[21]

MacLeod BP,Morrissey TD.Self-driving laboratory for accelerated discovery of thin-film materials.Sci Adv2020;6:eaaz8867 PMCID:PMC7220369

[22]

Jose R.Materials 4.0: materials big data enabled materials discovery.Appl Mater Today2018;10:127-32

[23]

Ghiringhelli LM,Levchenko SV,Scheffler M.Big data of materials science: critical role of the descriptor.Phys Rev Lett2015;114:105503

[24]

Stall S,Cutcher-Gershenfeld J.Make scientific data FAIR.Nature2019;570:27-9

[25]

Draxl C.NOMAD: The FAIR concept for big data-driven materials science.MRS Bull2018;43:676-82

[26]

DeCost BL,Trautt Z,Campo E.Scientific AI in materials science: a path to a sustainable and scalable paradigm.Mach Learn Sci Technol2020;1:033001 PMCID:PMC7919383

[27]

Scheffler M,Albrecht M.FAIR data enabling new horizons for materials research.Nature2022;604:635-42

[28]

Jain A,Hautier G.Commentary: the materials project: a materials genome approach to accelerating materials innovation.APL Mater2013;1:011002

[29]

Allen FH,Brice MD.The Cambridge crystallographic data centre: computer-based search, retrieval, analysis and display of information.Acta Crystallogr B Struct Sci1979;35:2331-9

[30]

Guarino N,Staab S. What is an ontology? In: Staab S, Studer R, editors. Heidelberg: Springer; 2009. pp.1-17.

[31]

Adamovic N,Goldbeck G.European materials modelling council. In Proceedings of the 4th World Congress on Integrated Computational Materials Engineering (ICME 2017): Springer; 2017, pp. 79-92.

[32]

Council EMM. Report on workshop on interoperability in materials modelling; 2017.

[33]

Draxl C.The NOMAD laboratory: from data sharing to artificial intelligence.J Phys Mater2019;2:036001

[34]

Lenz-Himmer MO,Baldauf C.Ontologies in computational materials science.APS March Meeting Abstracts2021;2021:X61-002

[35]

Nostro P, Goldbeck G, Toti D. CHAMEO: an ontology for the harmonisation of materials characterisation methodologies.Appl Ontol2022;17:401-21

[36]

Simon Clark FLB. Available from: https://github.com/BIG-MAP/BattINFO [Last accessed on 2 Mar 2023]

[37]

Deng Z,Bölle FT.Towards autonomous high-throughput multiscale modelling of battery interfaces.Energy Environ Sci2022;15:579-94

[38]

Maier D. The theory of relational databases. Rockville: Computer Science Press; 1983.

[39]

Halpin T. Information modeling and relational databases. Morgan Kaufmann; 2010.

[40]

Robinson I,Eifrem E. Graph databases: new opportunities for connected data. O'Reilly Media, Inc.; 2015.

[41]

Holzschuher F.Performance of graph query languages: comparison of cypher, gremlin and native access in neo4j. Proceedings of the Joint EDBT/ICDT 2013 Workshops; 2013. pp. 195-204.

[42]

Vicknair C,Zhao Z.A comparison of a graph database and a relational database: a data provenance perspective. Proceedings of the 48th annual Southeast regional conference; 2010. pp. 1-6

[43]

Banker K,Bakkum P. MongoDB in action: covers MongoDB version 3.0. Simon and Schuster; 2016.

[44]

Seeger M. Key-value stores: a practical overview. Available from: https://blog.marc-seeger.de/assets/papers/Ultra_Large_Sites_SS09-Seeger_Key_Value_Stores.pdf [Last accessed on 2 Mar 2023]

[45]

Idreos S.Key-value storage engines. Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data; 2020. pp. 2667-72.

[46]

Berge C. The theory of graphs. Courier Corporation; 2001.

[47]

Moreau L,Futrelle J,Myers J.The open provenance model: an overview. In: Freire J, Koop D, Moreau L, editors. Provenance and annotation of data and processes. Berlin: Springer Berlin Heidelberg; 2008. pp. 323-6.

[48]

MacLeod BP,Rupnow CC.A self-driving laboratory advances the Pareto front for material properties.Nat Commun2022;13:995 PMCID:PMC8863835

[49]

Rooney MB,Oldford R.A self-driving laboratory designed to accelerate the discovery of adhesive materials.Digital Discovery2022;1:382-9

[50]

Pizzi G,Sabatini R,Kozinsky B.AiiDA: automated interactive infrastructure and database for computational science.Comput Mater Sci2016;111:218-30

[51]

Edwards R. Neomodel documentation. Available from: https://neomodel.readthedocs.io/en/latest/ [Last accessed on 2 Mar 2023]

AI Summary AI Mindmap
PDF

55

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/