Machine learning based optimization method for vacuum carburizing process and its application
Honghao Jia , Dongying Ju , Jianting Cao
Journal of Materials Informatics ›› 2023, Vol. 3 ›› Issue (2) : 9
Machine learning based optimization method for vacuum carburizing process and its application
This paper develops an optimized prediction method based on machine learning for optimal process parameters for vacuum carburizing. The critical point is data expansion through machine learning based on a few parameters and data, which leads to optimizing parameters for vacuum carburization in heat treatment. This method extends the data volume by constructing a neural network with data augmentation in the presence of small data samples. In this paper, the database of 213 data is expanded to a database of 2,116,800 data by optimizing the prediction. Finally, we found the optimal vacuum carburizing process parameters through the vast database. The relative error of the three targets is less than that of the target obtained by the simulation of the corresponding parameters. The relative error is less than 5.6%, 1%, and 0.02%, respectively. Compared to simulations and actual experiments, the optimized prediction method in this paper saves much computational time. It provides a large amount of referable process parameter data while ensuring a certain level of accuracy.
Machine learning / heat treatment / neural networks / data augmentation / small sample
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
/
| 〈 |
|
〉 |