High-entropy alloy catalysts: high-throughput and machine learning-driven design

Lixin Chen , Zhiwen Chen , Xue Yao , Baoxian Su , Weijian Chen , Xin Pang , Keun-Su Kim , Chandra Veer Singh , Yu Zou

Journal of Materials Informatics ›› 2022, Vol. 2 ›› Issue (4) : 19

PDF
Journal of Materials Informatics ›› 2022, Vol. 2 ›› Issue (4) :19 DOI: 10.20517/jmi.2022.23
Review

High-entropy alloy catalysts: high-throughput and machine learning-driven design

Author information +
History +
PDF

Abstract

High-entropy alloy (HEA) catalysts have recently attracted worldwide research interest due to their promising catalytic performance. Most current studies focus on designing HEA catalysts through trial-and-error methods. This produces scattered data and is not conducive to obtaining a fundamental understanding of the structure-property-performance relationships for HEA catalysts, thereby hindering their rational design. High-throughput (HT) techniques and machine learning (ML) methods show significant potential in generating, processing and analyzing databases with a vast amount of data, providing a new strategy for the further development of HEA catalysts. In this review, we summarize the recent literature on HT techniques for HEA synthesis, characterization and performance testing. We also review the ML models that are used to process and analyze existing databases to accelerate the discovery of HEA catalysts. Finally, the potential challenges and perspectives of HT techniques and ML models are presented to accelerate the discovery of new HEA catalysts and promote their development.

Keywords

High-entropy alloys / catalysts / high-throughput / machine learning / structure-activity relationship

Cite this article

Download citation ▾
Lixin Chen, Zhiwen Chen, Xue Yao, Baoxian Su, Weijian Chen, Xin Pang, Keun-Su Kim, Chandra Veer Singh, Yu Zou. High-entropy alloy catalysts: high-throughput and machine learning-driven design. Journal of Materials Informatics, 2022, 2(4): 19 DOI:10.20517/jmi.2022.23

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Meirer F.Spatial and temporal exploration of heterogeneous catalysts with synchrotron radiation.Nat Rev Mater2018;3:324-40

[2]

Toniato A,Laino T.Grand challenges on accelerating discovery in catalysis.Catal Today2022;387:140-2

[3]

Chu S,Liu N.The path towards sustainable energy.Nat Mater2016;16:16-22

[4]

Seh ZW,Dickens CF,Nørskov JK.Combining theory and experiment in electrocatalysis: insights into materials design.Science2017;355:eaad4998

[5]

Guan Q,Lin Y.Bimetallic monolayer catalyst breaks the activity-selectivity trade-off on metal particle size for efficient chemoselective hydrogenations.Nat Catal2021;4:840-9

[6]

O’connor NJ,Janik MJ.Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning.Nat Catal2018;1:531-9

[7]

Liu L.Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles.Chem Rev2018;118:4981-5079 PMCID:PMC6061779

[8]

Cui X,Ryabchuk P,Beller M.Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts.Nat Catal2018;1:385-97

[9]

Wang ZL,Ping Y,Zheng WT.An efficient CoAuPd/C catalyst for hydrogen generation from formic acid at room temperature.Angew Chem Int Ed Engl2013;52:4406-9

[10]

Lang X,Xiao B.Mesostructured intermetallic compounds of platinum and non-transition metals for enhanced electrocatalysis of oxygen reduction reaction.Adv Funct Mater2015;25:230-7

[11]

Qin Y,Guo K.Fine-tuning intrinsic strain in penta-twinned Pt-Cu-Mn nanoframes boosts oxygen reduction catalysis.Adv Funct Mater2020;30:1910107

[12]

Yao R,Shi H.Nanoporous surface high-entropy alloys as highly efficient multisite electrocatalysts for nonacidic hydrogen evolution reaction.Adv Funct Mater2021;31:2009613

[13]

Yao Y,Brozena A.High-entropy nanoparticles: synthesis-structure-property relationships and data-driven discovery.Science2022;376:eabn3103

[14]

Cantor B,Knight P.Microstructural development in equiatomic multicomponent alloys.Mater Sci Eng A2004;375-377:213-8

[15]

Yeh J,Lin S.Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes.Adv Eng Mater2004;6:299-303

[16]

Cheng C,Haché MJR.Phase transition and nanomechanical properties of refractory high-entropy alloy thin films: effects of co-sputtering Mo and W on a TiZrHfNbTa system.Nanoscale2022;14:7561-8

[17]

Cheng C,Haché MJR.Magnetron co-sputtering synthesis and nanoindentation studies of nanocrystalline (TiZrHf)x(NbTa)1-x high-entropy alloy thin films.Nano Res2022;15:4873-9

[18]

Xin Y,Qian Y.High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities.ACS Catal2020;10:11280-306

[19]

Ma Y,Wang Q.High-entropy energy materials: challenges and new opportunities.Energy Environ Sci2021;14:2883-905

[20]

Xie P,Huang Z.Highly efficient decomposition of ammonia using high-entropy alloy catalysts.Nat Commun2019;10:4011 PMCID:PMC6728353

[21]

Mori K,Kamiuchi N,Kobayashi H.Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation.Nat Commun2021;12:3884 PMCID:PMC8222268

[22]

Wang D,Huang Y.Tailoring lattice strain in ultra-fine high-entropy alloys for active and stable methanol oxidation.Sci China Mater2021;64:2454-66

[23]

Wu D,Nanba Y.Noble-metal high-entropy-alloy nanoparticles: atomic-level insight into the electronic structure.J Am Chem Soc2022;144:3365-9

[24]

Li H,Zhao H.Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis.Nat Commun2020;11:5437 PMCID:PMC7595151

[25]

Chen ZW,Gariepy Z,Singh CV.High-throughput and machine-learning accelerated design of high entropy alloy catalysts.Trends Chem2022;4:577-9

[26]

Haché MJ,Zou Y.Nanostructured high-entropy materials.J Mater Res2020;35:1051-75

[27]

Wan X,Niu H.Machine-learning-accelerated catalytic activity predictions of transition metal phthalocyanine dual-metal-site catalysts for CO2 reduction.J Phys Chem Lett2021;12:6111-8

[28]

Chen ZW,Chen LX,Chen D.Machine-learning-accelerated discovery of single-atom catalysts based on bidirectional activation mechanism.Chem Catal2021;1:183-95

[29]

Zafari M,Umer M.Machine learning-based high throughput screening for nitrogen fixation on boron-doped single atom catalysts.J Mater Chem A2020;8:5209-16

[30]

Deng C,Li F,Chen Z.Understanding activity origin for the oxygen reduction reaction on bi-atom catalysts by DFT studies and machine-learning.J Mater Chem A2020;8:24563-71

[31]

Wan X,Yu W,Wang X.Machine-learning-assisted discovery of highly efficient high-entropy alloy catalysts for the oxygen reduction reaction.Patterns (N Y)2022;3:100553 PMCID:PMC9481945

[32]

Roy D,Pathak B.Machine learning assisted exploration of high entropy alloy-based catalysts for selective CO2 reduction to methanol.J Phys Chem Lett2022;13:5991-6002

[33]

Nandy A,Taylor MG,Steeves AH.Computational discovery of transition-metal complexes: from high-throughput screening to machine learning.Chem Rev2021;121:9927-10000

[34]

Rodríguez-Martínez X,Campoy-Quiles M.Accelerating organic solar cell material’s discovery: high-throughput screening and big data.Energy Environ Sci2021;14:3301-22 PMCID:PMC8209551

[35]

Conway PL,Steggo J.High entropy alloys towards industrial applications: high-throughput screening and experimental investigation.Mater Sci Eng A2022;830:142297

[36]

Miracle D,Wertz K.New strategies and tests to accelerate discovery and development of multi-principal element structural alloys.Scr Mater2017;127:195-200

[37]

Mannodi-kanakkithodi A.Computational data-driven materials discovery.Trends Chem2021;3:79-82

[38]

Huang E,Singh SS.Machine-learning and high-throughput studies for high-entropy materials.Mater Sci Eng R Rep2022;147:100645

[39]

Lederer Y,Vecchio KS.The search for high entropy alloys: a high-throughput ab-initio approach.Acta Mater2018;159:364-83

[40]

Ångqvist M,Rahm JM.ICET - a python library for constructing and sampling alloy cluster expansions.Adv Theory Simul2019;2:1900015

[41]

van de Walle A,de Jong M.Efficient stochastic generation of special quasirandom structures.Calphad2013;42:13-8

[42]

de Walle A, Asta M, Ceder G. The alloy theoretic automated toolkit: a user guide.Calphad2002;26:539-53

[43]

Okhotnikov K,Cadars S.Supercell program: a combinatorial structure-generation approach for the local-level modeling of atomic substitutions and partial occupancies in crystals.J Cheminform2016;8:17 PMCID:PMC4818540

[44]

Zunger A,Ferreira LG.Special quasirandom structures.Phys Rev Lett1990;65:353-6

[45]

Feugmo CG, Ryczko K, Anand A, Singh CV, Tamblyn I. Neural evolution structure generation: high entropy alloys.J Chem Phys2021;155:044102

[46]

Li B,Gao W.An effective scheme to determine surface energy and its relation with adsorption energy.Acta Mater2021;212:116895

[47]

Sharma M,Shin DY.Work function-tailored graphene via transition metal encapsulation as a highly active and durable catalyst for the oxygen reduction reaction.Energy Environ Sci2019;12:2200-11

[48]

Duong T,Yan X,Chaudhuri S.A first-principles-based approach to the high-throughput screening of corrosion-resistant high entropy alloys.arXiv preprint arXiv2021;2104:10590

[49]

Abild-Pedersen F,Studt F.Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces.Phys Rev Lett2007;99:016105

[50]

Nørskov J,Logadottir A.Universality in heterogeneous catalysis.J Catal2002;209:275-8

[51]

Kuhl KP,Abram DN.New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces.Energy Environ Sci2012;5:7050

[52]

Chen ZW,Zheng WT.Steric hindrance in sulfur vacancy of monolayer MoS2 boosts electrochemical reduction of carbon monoxide to methane.ChemSusChem2018;11:1455-9

[53]

Roy D,Pathak B.Machine learning-driven high-throughput screening of alloy-based catalysts for selective CO2 hydrogenation to methanol.ACS Appl Mater Inter2021;13:56151-63

[54]

Singh AR,Schwalbe JA.Electrochemical ammonia synthesis - the selectivity challenge.ACS Catal2017;7:706-9

[55]

Chen Z,Jiang Q.Discovery of cobweb-like MoC6 and its application for nitrogen fixation.J Mater Chem A2018;6:9623-8

[56]

Saidi WA,Veser G.Optimization of high-entropy alloy catalyst for ammonia decomposition and ammonia synthesis.J Phys Chem Lett2021;12:5185-92

[57]

Montoya JH,Vojvodic A.The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations.ChemSusChem2015;8:2180-6

[58]

Skúlason E,Gudmundsdóttir S.A theoretical evaluation of possible transition metal electro-catalysts for N2reduction.Phys Chem Chem Phys2012;14:1235-45

[59]

Nørskov JK,Logadottir A.Origin of the overpotential for oxygen reduction at a fuel-cell cathode.J Phys Chem B2004;108:17886-92

[60]

Batchelor TA,Winther SH,Jacobsen KW.High-entropy alloys as a discovery platform for electrocatalysis.Joule2019;3:834-45

[61]

Lu Z,Singh CV.Neural network-assisted development of high-entropy alloy catalysts: decoupling ligand and coordination effects.Matter2020;3:1318-33

[62]

Saidi WA.Emergence of local scaling relations in adsorption energies on high-entropy alloys.NPJ Comput Mater2022;8

[63]

McCullough K,Mingle K,Lauterbach J.High-throughput experimentation meets artificial intelligence: a new pathway to catalyst discovery.Phys Chem Chem Phys2020;22:11174-96

[64]

Shukla S,Frank M.Friction stir gradient alloying: a novel solid-state high throughput screening technique for high entropy alloys.Mater Today Commun2020;23:100869

[65]

Zhu C,Wu D.A titanium alloys design method based on high-throughput experiments and machine learning.J Mater Res Technol2021;11:2336-53

[66]

Coury FG,Clarke KD,Clarke AJ.High-throughput solid solution strengthening characterization in high entropy alloys.Acta Mater2019;167:1-11

[67]

Moorehead M,Niezgoda M.High-throughput synthesis of Mo-Nb-Ta-W high-entropy alloys via additive manufacturing.Mater Des2020;187:108358

[68]

Pegues JW,Puckett R,Argibay N.Exploring additive manufacturing as a high-throughput screening tool for multiphase high entropy alloys.Addit Manuf2021;37:101598

[69]

Dobbelstein H,Gurevich EL,Ostendorf A.Laser metal deposition of refractory high-entropy alloys for high-throughput synthesis and structure-property characterization.Int J Extrem Manuf2021;3:015201

[70]

Li M,Borisevich A,Flores KM.Evaluation of microstructure and mechanical property variations in AlxCoCrFeNi high entropy alloys produced by a high-throughput laser deposition method.Intermetallics2018;95:110-8

[71]

Li M.Laser processing as a high-throughput method to investigate microstructure-processing-property relationships in multiprincipal element alloys.J Alloys Compd2020;825:154025

[72]

Zhao L,Yang L.High throughput synthesis enabled exploration of CoCrFeNi-based high entropy alloys.J Mater Sci Technol2022;110:269-82

[73]

Xu Y,Liu J.In-situ high throughput synthesis of high-entropy alloys.Scr Mater2019;160:44-7

[74]

Zhu B,Cheng C.Fast and High-throughput synthesis of medium- and high-entropy alloys using radio frequency inductively coupled plasma.Adv Eng Mater2021;23:2001116

[75]

Huang J,Ma Y,Wang D.A combinatorial electrode for high-throughput, high-entropy alloy screening.ChemElectroChem2021;8:4573-9

[76]

Matsubara M,Ohba N.Identifying superionic conductors by materials informatics and high-throughput synthesis.Commun Mater2020;1

[77]

Vecchio KS,Kaufmann KR.High-throughput rapid experimental alloy development (HT-READ).Acta Mater2021;221:117352

[78]

Yao Y,Li T.High-throughput, combinatorial synthesis of multimetallic nanoclusters.Proc Natl Acad Sci U S A2020;117:6316-22 PMCID:PMC7104385

[79]

Shi Y,Rack PD,Liaw PK.High-throughput synthesis and corrosion behavior of sputter-deposited nanocrystalline Alx(CoCrFeNi)100-x combinatorial high-entropy alloys.Mater Des2020;195:109018

[80]

Batchelor TAA,Xiao B.Complex-solid-solution electrocatalyst discovery by computational prediction and high-throughput experimentation*.Angew Chem Int Ed Engl2021;60:6932-7 PMCID:PMC8048820

[81]

Banko L,Pedersen JK.Unravelling composition-activity-stability trends in high entropy alloy electrocatalysts by using a data-guided combinatorial synthesis strategy and computational modeling.Adv Energy Mater2022;12:2103312

[82]

Yang Z.Applications of machine learning in alloy catalysts: rational selection and future development of descriptors.Adv Sci (Weinh)2022;9:e2106043 PMCID:PMC9036033

[83]

Gao W,Li B,Liu X.Determining the adsorption energies of small molecules with the intrinsic properties of adsorbates and substrates.Nat Commun2020;11:1196 PMCID:PMC7058040

[84]

Pedersen JK,Krysiak OA.Bayesian optimization of high-entropy alloy compositions for electrocatalytic oxygen reduction*.Angew Chem Int Ed Engl2021;60:24144-52 PMCID:PMC8596574

[85]

Zhong M,Min Y.Accelerated discovery of CO2 electrocatalysts using active machine learning.Nature2020;581:178-83

[86]

Pedersen JK,Bagger A.High-entropy alloys as catalysts for the CO2 and CO reduction reactions.ACS Catal2020;10:2169-76

[87]

Tran K.Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution.Nat Catal2018;1:696-703

[88]

Li Z,Xin H.Feature engineering of machine-learning chemisorption models for catalyst design.Catal Today2017;280:232-8

[89]

Huang B.Quantum machine learning using atom-in-molecule-based fragments selected on the fly.Nat Chem2020;12:945-51

[90]

Li X,Hu Z,Page AJ.Improved representations of heterogeneous carbon reforming catalysis using machine learning.J Chem Theory Comput2019;15:6882-94

[91]

Bartók AP,Csányi G.On representing chemical environments.Phys Rev B2013;87

[92]

Back S,Tian N,Tran K.Convolutional neural network of atomic surface structures to predict binding energies for high-throughput screening of catalysts.J Phys Chem Lett2019;10:4401-8

[93]

Gu GH,Kim S,Ulissi Z.Practical deep-learning representation for fast heterogeneous catalyst screening.J Phys Chem Lett2020;11:3185-91

[94]

Christensen AS,Faber FA.FCHL revisited: faster and more accurate quantum machine learning.J Chem Phys2020;152:044107

[95]

Li X,Page AJ.Group and period-based representations for improved machine learning prediction of heterogeneous alloy catalysts.J Phys Chem Lett2021;12:5156-62

[96]

Li X,Yang Z,Gao W.A transferable machine-learning scheme from pure metals to alloys for predicting adsorption energies.J Mater Chem A2022;10:872-80

[97]

Fu M,Zhao K,Su D.High-entropy materials for energy-related applications.iScience2021;24:102177 PMCID:PMC7921604

[98]

Wang D,Wu Y.Structurally ordered high-entropy intermetallic nanoparticles with enhanced C-C bond cleavage for ethanol oxidation.SmartMat2022;

[99]

Feng G,Song J.Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution.J Am Chem Soc2021;143:17117-27

AI Summary AI Mindmap
PDF

342

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/