A mini review of machine learning in inorganic phosphors
Lipeng Jiang , Xue Jiang , Guocai Lv , Yanjing Su
Journal of Materials Informatics ›› 2022, Vol. 2 ›› Issue (3) : 14
A mini review of machine learning in inorganic phosphors
Machine learning has promoted the rapid development of materials science. In this review, we provide an overview of recent advances in machine learning for inorganic phosphors. We take two aspects of material properties prediction and optimization based on iterative experiments as entry points to outline the applications of machine learning for inorganic phosphors in terms of Debye temperature prediction and luminescence intensity and thermal stability optimization. By analyzing the machine learning methods and their application objectives, current problems are summarized and suggestions for subsequent development are proposed.
Machine learning / phosphors / materials genome initiative
| [1] |
White House Office of Science and Technology Policy. Materials genome initiative for global competitiveness. Available from: https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf [Last accessed on 13 Sep 2022] |
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
/
| 〈 |
|
〉 |