A metadata schema for lattice thermal conductivity from first-principles calculations
Yongchao Rao , Yongchao Lu , Lanting Zhang , Shenghong Ju , Ning Yu , Aimin Zhang , Li Chen , Hong Wang
Journal of Materials Informatics ›› 2022, Vol. 2 ›› Issue (4) : 17
A metadata schema for lattice thermal conductivity from first-principles calculations
Materials genome engineering databases represent fundamental infrastructures for data-driven materials design, in which the data resources should satisfy the FAIR (Findable, Accessible, Interoperable and Reusable) principles. However, a variety of challenges, such as data standardization, veracity and longevity, still impede the progress of data-driven materials science, including both high-throughput experiments and simulations. In this work, we propose a metadata schema for lattice thermal conductivity from first-principles calculations. The calculation workflow for lattice thermal conductivity includes structural optimization and the calculation of interatomic force constants and lattice thermal conductivity. The data generated during the calculation process corresponds to the virtual sample information, virtual source data and processed data, respectively, as specified in the General rule for materials genome engineering data of the Chinese Society for Testing and Materials. Following this general rule, the metadata structure and schema for each action are systematically defined and all metadata elements can be collected completely. Although this metadata schema is specific to lattice thermal conductivity calculations, it provides general rules and insights for other computational materials data in materials genome engineering.
Materials genome engineering / metadata schema / first-principles calculations / lattice thermal conductivity
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
Chinese Society for Testing and Materials (CSTM). T/CSTM 00120-2019: General rule for materials genome engineering data. Available from: http://www.cstm.com.cn/article/details/ef49a444-80ca-4e71-99eb-e1e76c039d9f [Last accessed on 27 Oct 2022] |
| [22] |
Chinese Society for Testing and Materials (CSTM). T/CSTM 00837-2022: materials genome engineering data-Metadata standardization principle and method. Available from: http://www.cstm.com.cn/article/details/390ce11f-41a2-4d01-8544-04012bb13782 [Last accessed on 27 Oct 2022] |
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
/
| 〈 |
|
〉 |