High-cycle fatigue S-N curve prediction of steels based on a transfer learning-guided convolutional neural network
Xiaolu Wei , Chenchong Wang , Zixi Jia , Wei Xu
Journal of Materials Informatics ›› 2022, Vol. 2 ›› Issue (3) : 9
High-cycle fatigue S-N curve prediction of steels based on a transfer learning-guided convolutional neural network
The evaluation and prediction of fatigue properties are crucial for metallic materials. Although the determination of S-N curves represents the most important methods for evaluating such properties, its fatigue testing is costly and time-consuming. Furthermore, fatigue testing involves different test conditions, thereby complicating the evaluation of the fatigue properties. This study develops a transfer convolutional neural network (TR-CNN) framework, in which the prediction of the reversed torsion S-N curves of steels is transferred from rotating bending S-N curves. In the TR-CNN framework, the source CNN models for rotating-bending curve prediction are first trained based on the composition and process conditions. Subsequently, based on the source models, the reversed torsion S-N curves are estimated by training the TR-CNN models based on only a small dataset. After proving the rationality of the framework, its universality with respect to different amounts of data is further investigated. The reversed torsion curves under small-sample conditions (22 samples) are predicted accurately by the TR-CNN. Additionally, the TR-CNN models remain accurate under varying amounts of data (22-112 samples), showing excellent generality for different amounts of fatigue data. The predictive capability of the TR-CNN models is improved by introducing tensile properties into the source models. The proposed TR-CNN framework can significantly reduce the cost of evaluating fatigue properties, and the prediction of S-N curves can be optimized by combining the transfer framework and low-cost properties related to fatigue.
High-cycle fatigue / S-N curves / CNN / transfer learning
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
Jamal M N, Kumar A, Lakshmana Rao C, Basaran C. Low cycle fatigue life prediction using unified mechanics theory in Ti-6Al-4V alloys.Entropy (Basel)2019;22:24 PMCID:PMC7516445 |
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
NIMS. Fatigue data sheet. Available from: https://smds.nims.go.jp/fatigue/ [Last accessed on 8 Jul 2022] |
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
/
| 〈 |
|
〉 |