CuB monolayer: a novel 2D anti-van’t Hoff/Le Bel nanostructure with planar hyper-coordinate boron/copper and superconductivity

Kaixiong Tu , Jinxing Gu , Linguo Lu , Shijun Yuan , Long Zhou , Zhongfang Chen

Journal of Materials Informatics ›› 2022, Vol. 2 ›› Issue (3) : 13

PDF
Journal of Materials Informatics ›› 2022, Vol. 2 ›› Issue (3) :13 DOI: 10.20517/jmi.2022.10
Research Article

CuB monolayer: a novel 2D anti-van’t Hoff/Le Bel nanostructure with planar hyper-coordinate boron/copper and superconductivity

Author information +
History +
PDF

Abstract

To achieve specific applications, it is always desirable to design new materials with peculiar topological properties. Herein, based on a D2h B2Cu6H6 molecule with the unique chemical bonding of planar pentacoordinate boron (ppB) as a building block, we constructed an infinite CuB monolayer by linking B2Cu6 subunits in an orthorhombic lattice. The planarity of the CuB sheet is attributed to the multicenter bonds and electron donation-back donation, as revealed by chemical bonding analysis. As a global minimum confirmed by the particle swarm optimization method, the CuB monolayer is expected to be highly stable, as indicated by its rather high cohesive energy, absence of soft phonon modes, and good resistance to high temperature, and thus is highly feasible for experimental realization. Remarkably, this CuB monolayer is metallic and predicted to be superconducting with an estimated critical temperature (Tc) of 4.6 K, and the critical temperature could be further enhanced by tensile strains (to 21 K at atmospheric pressure).

Keywords

Planar pentacoordinate boron / planar heptacoordinate copper / copper boride monolayer / density functional calculations / superconducting

Cite this article

Download citation ▾
Kaixiong Tu, Jinxing Gu, Linguo Lu, Shijun Yuan, Long Zhou, Zhongfang Chen. CuB monolayer: a novel 2D anti-van’t Hoff/Le Bel nanostructure with planar hyper-coordinate boron/copper and superconductivity. Journal of Materials Informatics, 2022, 2(3): 13 DOI:10.20517/jmi.2022.10

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Balakrishnarajan MM.Electron-deficient bonding in rhomboid rings.J Am Chem Soc2004;126:13119-31

[2]

Tang H.Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets.Phys Rev Lett2007;99:115501

[3]

Yang X,Ni J.Ab initio prediction of stable boron sheets and boron nanotubes: structure, stability, and electronic properties.Phys Rev B2008;77

[4]

Penev ES,Sadrzadeh A.Polymorphism of two-dimensional boron.Nano Lett2012;12:2441-5

[5]

Wu X,Zhao Y,Yang J.Two-dimensional boron monolayer sheets.ACS Nano2012;6:7443-53

[6]

Zhai HJ,Li WL.Observation of an all-boron fullerene.Nat Chem2014;6:727-31

[7]

Sergeeva AP,Piazza ZA.Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality.Acc Chem Res2014;47:1349-58

[8]

Zhang Z,Yakobson BI.Two-dimensional boron: structures, properties and applications.Chem Soc Rev2017;46:6746-63

[9]

Szwacki N, Sadrzadeh A, Yakobson BI. B80 fullerene: an Ab initio prediction of geometry, stability, and electronic structure.Phys Rev Lett2007;98:166804

[10]

Liu Y,Yakobson BI.Probing the synthesis of two-dimensional boron by first-principles computations.Angew Chem Int Ed Engl2013;52:3156-9

[11]

Zhang H,Zhang Z.Dirac nodal lines and tilted semi-dirac cones coexisting in a striped boron sheet.J Phys Chem Lett2017;8:1707-13

[12]

Singh AK,Yakobson BI.Probing properties of boron alpha-tubes by Ab Initio calculations.Nano Lett2008;8:1314-7

[13]

Zhao J,Li F.B(80) and other medium-sized boron clusters: core-shell structures, not hollow cages.J Phys Chem A2010;114:9969-72

[14]

Li F,Jiang DE.B80 and B101-103 clusters: remarkable stability of the core-shell structures established by validated density functionals.J Chem Phys2012;136:074302

[15]

Piazza ZA,Li WL,Li J.Planar hexagonal B(36) as a potential basis for extended single-atom layer boron sheets.Nat Commun2014;5:3113

[16]

Mannix AJ,Kiraly B.Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs.Science2015;350:1513-6 PMCID:PMC4922135

[17]

Feng B,Zhong Q.Experimental realization of two-dimensional boron sheets.Nat Chem2016;8:563-8

[18]

Kiraly B,Wang L.Borophene synthesis on Au(111).ACS Nano2019;13:3816-22

[19]

Wu R,Eltinge S.Large-area single-crystal sheets of borophene on Cu(111) surfaces.Nat Nanotechnol2019;14:44-9

[20]

Xie SY,Li XB.Flat Boron: a new cousin of graphene.Adv Mater2019;31:e1900392

[21]

Xie Z,Li X.Two-dimensional borophene: properties, fabrication, and promising applications.Research (Wash D C)2020;2020:2624617 PMCID:PMC7312787

[22]

Kaneti YV,Xu X,Yamauchi Y.Borophene: two-dimensional boron monolayer: synthesis, properties, and potential applications.Chem Rev2022;122:1000-51

[23]

Ou M,Yu L.The emergence and evolution of borophene.Adv Sci (Weinh)2021;8:2001801 PMCID:PMC8224432

[24]

Zhang Z,Gao G.Two-dimensional boron monolayers mediated by metal substrates.Angew Chem2015;127:13214-8

[25]

Xu SG,Zhao YJ.Two-dimensional semiconducting boron monolayers.J Am Chem Soc2017;139:17233-6

[26]

Li W,Jian T,Li J.From planar boron clusters to borophenes and metalloborophenes.Nat Rev Chem2017;1

[27]

Romanescu C,Li W,Wang L.Aromatic metal-centered monocyclic boron rings: Co©B8− and Ru©B9−.Angew Chem2011;123:9506-9

[28]

Popov IA,Lopez GV,Wang LS.Cobalt-centred boron molecular drums with the highest coordination number in the CoB16- cluster.Nat Commun2015;6:8654 PMCID:PMC4633964

[29]

Zhang H,Hou J,Chen Z.FeB6 monolayers: the Graphene-like material with hypercoordinate transition metal.J Am Chem Soc2016;138:5644-51

[30]

Zhang H,Hou J,Chen Z.Dirac state in the FeB2 monolayer with graphene-like boron sheet.Nano Lett2016;16:6124-9

[31]

Hoff V.Sur les formules de structure dans l’espace.Archives néerlandaises des sciences exactes et naturelles1874; 9:445-454

[32]

Bel L.Sur les relations qui existent entre les formules atomiques des corps organiques et le pouvoir rotatoire de leurs dissolutions.Bulletin de la Société Chimique de Paris1874; 22:337-347

[33]

Yang LM,Chen Z,Schleyer Pv.Four decades of the chemistry of planar hypercoordinate compounds.Angew Chem Int Ed Engl2015;54:9468-501

[34]

Wang Y,Chen Z.Planar hypercoordinate motifs in two-dimensional materials.Acc Chem Res2020;53:887-95

[35]

Yam VW,Cheung K.Luminescence behavior of polynuclear alkynylcopper(I) Phosphines.J Cluster Sci1999; 10:37-69

[36]

Vega A,Spodine E,Fuenzalida V.A novel copper cobalt inorganometallic cluster. Synthesis, structure and bonding analysis of Cu(3)[mu(2)-(CCHCo(2)(CO)(6))](3).Inorg Chem2002;41:3389-95

[37]

Tsipis AC.Hydrometal analogues of aromatic hydrocarbons: a new class of cyclic hydrocoppers(I).J Am Chem Soc2003;125:1136-7

[38]

Boca R,Mezei G,Raptis RG.Triangular, ferromagnetically-coupled CuII 3-pyrazolato complexes as possible models of particulate methane monooxygenase (pMMO).Inorg Chem2003;42:5801-3

[39]

Gawande MB,Felpin FX.Cu and Cu-based nanoparticles: synthesis and applications in catalysis.Chem Rev2016;116:3722-811

[40]

Bhanushali S,Ganesh A.1D copper nanostructures: progress, challenges and opportunities.Small2015;11:1232-52

[41]

Yang L,Ganz E.Properties of the free-standing two-dimensional copper monolayer.J Nanomater2016;2016:1-6

[42]

Yang LM,Popov IA.Two-dimensional Cu2Si monolayer with planar hexacoordinate copper and silicon bonding.J Am Chem Soc2015;137:2757-62

[43]

Feng B,Kasamatsu S.Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu2Si.Nat Commun2017;8:1007 PMCID:PMC5647340

[44]

Yan L,Bo T.Emergence of superconductivity in a Dirac nodal-line Cu2Si monolayer: ab initio calculations.J Mater Chem C2019;7:10926-32

[45]

Ma Y,Dai Y.Two-dimensional topological insulators in group-11 chalcogenide compounds: M2Te(M=Cu,Ag).Phys Rev B2016;93

[46]

Yang LM,Boldyrev AI,Frauenheim T.Post-anti-van’t Hoff-Le Bel motif in atomically thin germanium-copper alloy film.Phys Chem Chem Phys2015;17:17545-51

[47]

Li S,Miao C.M4H4X: Hydrometals (M = Cu, Ni) containing tetracoordinate planar nonmetals (X=B, C, N, O).Angew Chem2004;116:1395-7

[48]

Li S,Ren G.D5h Cu5H5X: Pentagonal hydrocopper Cu5H5 containing pentacoordinate planar nonmetal centers (X = B, C, N, O).Eur J Inorg Chem2004;2004:2232-4

[49]

Jia J,Wang Z,Zhou Z.A Cu2B2 monolayer with planar hypercoordinate motifs: an efficient catalyst for CO electroreduction to ethanol.J Mater Chem A2020;8:9607-15

[50]

Weng X,Hou J.First-principles prediction of two-dimensional copper borides.Phys Rev Materials2020;4

[51]

Yue C,Gao G.Formation of copper boride on Cu(111).Fundam Res2021;1:482-7

[52]

Becke AD.Density-functional thermochemistry. III. The role of exact exchange.J Chem Phys1993;98:5648-52

[53]

Lee C,Parr RG.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.Phys Rev B Condens Matter1988;37:785-9

[54]

Stephens PJ,Chabalowski CF.Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields.J Phys Chem1994;98:11623-7

[55]

Neese F.Software update: the ORCA program system, version 4.0.WIREs Comput Mol Sci2018;8

[56]

Blöchl PE.Projector augmented-wave method.Phys Rev B Condens Matter1994;50:17953-79

[57]

Kresse G.From ultrasoft pseudopotentials to the projector augmented-wave method.Phys Rev B1999;59:1758-75

[58]

Kresse G.Ab initio molecular dynamics for liquid metals.Phys Rev B Condens Matter1993;47:558-61

[59]

Perdew JP,Ernzerhof M.Generalized gradient approximation made simple.Phys Rev Lett1996;77:3865-8

[60]

Heyd J,Ernzerhof M.Hybrid functionals based on a screened Coulomb potential.J Chem Phys2003;118:8207-15

[61]

Becke AD.A simple measure of electron localization in atomic and molecular systems.J Chem Phys1990;92:5397-403

[62]

Silvi B.Classification of chemical bonds based on topological analysis of electron localization functions.Nature1994;371:683-6

[63]

Galeev TR,Schmidt JR.Solid state adaptive natural density partitioning: a tool for deciphering multi-center bonding in periodic systems.Phys Chem Chem Phys2013;15:5022-9

[64]

Clark SJ,Pickard CJ.First principles methods using CASTEP.Z Kristallogr - Cryst Mater2005;220:567-70

[65]

Segall MD,Pickard CJ.Population analysis of plane-wave electronic structure calculations of bulk materials.Phys Rev B1996; 54:16317-16320

[66]

Togo A.First principles phonon calculations in materials science.Scr Mater2015;108:1-5

[67]

Martyna GJ,Tuckerman M.Nosé-Hoover chains: the canonical ensemble via continuous dynamics.J Chem Phys1992;97:2635-43

[68]

Giannozzi P,Bonini N.QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 2009;21:395502.

[69]

Savrasov SY,Andersen OK.Linear-response calculations of electron-phonon interactions.Phys Rev Lett1994;72:372-5

[70]

Kurth S,Lüders M.Local density approximation for superconductors.Phys Rev Lett1999;83:2628-31

[71]

Moret ME,Peters JC.A polar copper-boron one-electron σ-bond.J Am Chem Soc2013;135:3792-5

[72]

Holler S,Belaj F,Kirchner K.Thiopyridazine-based copper boratrane complexes demonstrating the Z-type nature of the ligand.Inorg Chem2016;55:4980-91

[73]

Wang Y,Wei P.A stable, neutral diborene containing a B=B double bond.J Am Chem Soc2007;129:12412-3

[74]

Zhou M,Li Z,Andrews L.OCBBCO: a neutral molecule with some boron-boron triple bond character.J Am Chem Soc2002;124:12936-7

[75]

Braunschweig H,Hammond K,Radacki K.Ambient-temperature isolation of a compound with a boron-boron triple bond.Science2012;336:1420-2

[76]

Wiberg K.Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane.Tetrahedron1968;24:1083-96

[77]

Harper LK,Bayse CA.Predicting trigger bonds in explosive materials through wiberg bond index analysis.Chem Phys Chem2015; 16:3886-3892

[78]

Mayer I.Bond order and valence indices: a personal account.J Comput Chem2007;28:204-21

[79]

Foster JP.Natural hybrid orbitals.J Am Chem Soc1980;102:7211-8

[80]

Reed AE.Natural bond orbital analysis of near-Hartree-Fock water dimer.J Chem Phys1983;78:4066-73

[81]

Hoffmann R,Wilcox CF.Planar tetracoordinate carbon.J Am Chem Soc1970;92:4992-3

[82]

Reed AE,Weinhold F.Natural population analysis.J Chem Phys1985;83:735-46

[83]

Hirshfeld FL.Bonded-atom fragments for describing molecular charge densities.Theoret Chim Acta1977;44:129-38

[84]

Lee C,Kysar JW.Measurement of the elastic properties and intrinsic strength of monolayer graphene.Science2008; 321:385-388

[85]

Cai Y,Zhang YW.Polarity-reversed robust carrier mobility in monolayer MoS₂ nanoribbons.J Am Chem Soc2014;136:6269-75

[86]

Wei X,Marianetti CA.Nonlinear elastic behavior of graphene: Ab initio calculations to continuum description.Phys Rev B2009;80

[87]

Peng Q,De S.Mechanical properties of the hexagonal boron nitride monolayer: Ab initio study.Comput Materi Sci2012;56:11-7

[88]

Cooper RC,Marianetti CA,Hone J.Nonlinear elastic behavior of two-dimensional molybdenum disulfide.Phys Rev B2013;87

[89]

Nagamatsu J,Muranaka T,Akimitsu J.Superconductivity at 39K in magnesium diboride.Nature2001;410:63-4

[90]

Kortus J,Belashchenko KD,Boyer LL.Superconductivity of metallic boron in MgB2.Phys Rev Lett2001;86:4656-9

[91]

Allen PB.Transition temperature of strong-coupled superconductors reanalyzed.Phys Rev B1975;12:905-22

[92]

Chen J.Emergence of intrinsic superconductivity in monolayer W2N3.Phys Rev B2021;103

[93]

Singh S,Mella JD.High-temperature phonon-mediated superconductivity in monolayer Mg2B4C2.npj Quantum Mater2022;7

[94]

Zhang X,Cui B,Liu F.Theoretical discovery of a superconducting two-dimensional metal-organic framework.Nano Lett2017;17:6166-70

[95]

Bud'ko SL,Petrovic C,Anderson N.Boron isotope effect in superconducting MgB2.Phys Rev Lett2001;86:1877-80

[96]

Ge Y,Liu Y.Two dimensional superconductors in electrides.New J Phys2017;19:123020

[97]

Wang L,Liu Z.Magnetotransport properties in high-quality ultrathin two-dimensional superconducting Mo2C crystals.ACS Nano2016;10:4504-10

[98]

Song B,Yang HM.Two-dimensional anti-van’t hoff/Le Bel array AlB6 with high stability, unique motif, triple dirac cones, and superconductivity.J Am Chem Soc2019;141:3630-40

[99]

Peng R,Xie X.Measurement of an enhanced superconducting phase and a pronounced anisotropy of the energy gap of a strained FeSe single layer in FeSe/Nb:SrTiO3/KTaO3 heterostructures using photoemission spectroscopy.Phys Rev Lett2014;112:107001

AI Summary AI Mindmap
PDF

53

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/