Giant rashba splitting of confined Te chains in nanotubes: the size-, chirality-, and type- effects of nanotubes

Jie Han , Liujian Qi , Cong Ma , Wang Gao

Journal of Materials Informatics ›› 2022, Vol. 2 ›› Issue (2) : 6

PDF
Journal of Materials Informatics ›› 2022, Vol. 2 ›› Issue (2) :6 DOI: 10.20517/jmi.2022.08
Research Article

Giant rashba splitting of confined Te chains in nanotubes: the size-, chirality-, and type- effects of nanotubes

Author information +
History +
PDF

Abstract

Understanding the coupling between one-dimensional (1D) materials and their protective materials is essential for developing nanodevices. Herein, we investigate the effect of the size, chirality, and type of nanotubes [such as carbon/boron nitride nanotubes (CNTs/BNNTs)] on the atomic and electronic structures of confined Te chains using density functional theory. We find that the optimal configurations of the Te chains confined in CNTs/BNNTs depend strongly on the size of the nanotubes but weakly on their chirality and type. Furthermore, the Te@BNNTs exhibit giant Rashba splitting with a Rashba constant of up to 2.65 eV Å, while the Te@CNTs show no splitting. This is mainly due to the large bandgap of the BNNTs, as well as the enhanced symmetry breaking of the Te chains when confined. Our findings provide a basis for the design of nano spin devices through protective materials.

Keywords

Confined Te chains / Nanotubes / Size / Chirality / Rashba splitting

Cite this article

Download citation ▾
Jie Han, Liujian Qi, Cong Ma, Wang Gao. Giant rashba splitting of confined Te chains in nanotubes: the size-, chirality-, and type- effects of nanotubes. Journal of Materials Informatics, 2022, 2(2): 6 DOI:10.20517/jmi.2022.08

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Qi L,Gao W.Monolayer tellurenyne assembled with helical telluryne: structure and transport properties.Nanoscale2019;11:4053-60

[2]

Wang Y,Wang R.Field-effect transistors made from solution-grown two-dimensional tellurene.Nat Electron2018;1:228-36

[3]

Qiu G,Nie Y.Quantum transport and band structure evolution under high magnetic field in few-layer tellurene.Nano Lett2018;18:5760-7

[4]

Zhu Z,Yi S.Multivalency-driven formation of Te-based monolayer materials: a combined first-principles and experimental study.Phys Rev Lett2017;119:106101

[5]

Doi T,Kamimura H.The valence band structure of tellurium. I. The k·p Perturbation Method.J Phys Soc Jpn1970;28:36-43

[6]

Martin RM,Helliwell K.Intermolecular bonding and lattice dynamics of Se and Te.Phys Rev B1976;13:1383-95

[7]

Du Y,Wang Y.One-dimensional van der waals material tellurium: raman spectroscopy under strain and magneto-transport.Nano Lett2017;17:3965-73

[8]

Medeiros PVC,Wynn JM.Single-atom scale structural selectivity in Te nanowires encapsulated inside ultranarrow, single-walled carbon nanotubes.ACS Nano2017;11:6178-85

[9]

Pham T,Stetz P.Torsional instability in the single-chain limit of a transition metal trichalcogenide.Science2018;361:263-6

[10]

Kobayashi K.Structural transition of tellurium encapsulated in confined one-dimensional nanospaces depending on the diameter.Chemical Physics Letters2015;634:60-5

[11]

Agapito LA,Goddard WA 3rd.Novel family of chiral-based topological insulators: elemental tellurium under strain.Phys Rev Lett2013;110:176401

[12]

Han J,Chen M,Jiang Q.Giant Rashba splitting in one-dimensional atomic tellurium chains.Nanoscale2020;12:10277-83

[13]

Walker KE,Pekker Á.Growth of carbon nanotubes inside boron nitride nanotubes by coalescence of fullerenes: toward the world’s smallest coaxial cable.Small Methods2017;1:1700184

[14]

Nieto-Ortega B,Vera-Hidalgo M,Burzurí E.Band-gap opening in metallic single-walled carbon nanotubes by encapsulation of an organic salt.Angew Chem Int Ed Engl2017;56:12240-4

[15]

Komsa HP,Suenaga K.Structural distortions and charge density waves in iodine chains encapsulated inside carbon nanotubes.Nano Lett2017;17:3694-700

[16]

Qin J,Si M.Raman response and transport properties of tellurium atomic chains encapsulated in nanotubes.Nat Electron2020;3:141-7

[17]

Ilie A,Nagaoka K,Nakayama T.Encapsulated inorganic nanostructures: a route to sizable modulated, noncovalent, on-tube potentials in carbon nanotubes.ACS Nano2011;5:2559-69

[18]

Slade CA,Sloan J.Unprecedented new crystalline forms of SnSe in narrow to medium diameter carbon nanotubes.Nano Lett2019;19:2979-84

[19]

Fujimori T,Hayashi T,Kaneko K.Formation and properties of selenium double-helices inside double-wall carbon nanotubes: experiment and theory.ACS Nano2013;7:5607-13

[20]

Fujimori T,Zhu Z.Conducting linear chains of sulphur inside carbon nanotubes.Nat Commun2013;4:2162 PMCID:PMC3717502

[21]

Liu M,Zheng Y.Photoluminescence from SINGLE-WALLEd MoS2 nanotubes coaxially grown on boron nitride nanotubes.ACS Nano2021;15:8418-26

[22]

Segall MD,Probert MJ.First-principles simulation: ideas, illustrations and the CASTEP code.J Phys : Condens Matter2002;14:2717-44

[23]

Perdew JP,Ernzerhof M.Generalized gradient approximation made simple.Phys Rev Lett1996;77:3865-8

[24]

Tkatchenko A.Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data.Phys Rev Lett2009;102:073005

[25]

Bondi A.van der Waals volumes and radii.J Phys Chem1964;68:441-51

[26]

Hu S,Robertson BE.Consistent approaches to van der Waals radii for the metallic elements.Zeitschrift für Kristallographie2009;224:375-83

[27]

Lanzillo NA,Nayak SK.Substrate-induced band gap renormalization in semiconducting carbon nanotubes.Sci Rep2014;4:3609 PMCID:PMC3885876

[28]

Xiang H,Hou J.First-principles study of small-radius single-walled BN nanotubes.Phys Rev B2003;68

[29]

Eliseev AA,Kharlamova MV. Electronic properties of carbon nanotubes. In: M. Marulanda editor. Chapter 8: One-dimensional crystals inside single-walled carbon nanotubes: growth, structure and electronic properties. IntechOpen publisher; 2011. pp. 127-156

[30]

Pari S,Wong BM.Structural and electronic properties of graphdiyne carbon nanotubes from large-scale DFT calculations.J Phys Chem C2016;120:18871-7

[31]

Nitta J,Takayanagi H.Gate control of spin-orbit interaction in an inverted I n0.53 G a0.47 As/I n0.52 A l0.48 as heterostructure.Phys Rev Lett1997;78:1335-8

[32]

Barke I,Rügheimer TK.Experimental evidence for spin-split bands in a one-dimensional chain structure.Phys Rev Lett2006;97:226405

[33]

Park J,Jung MC,Kosugi N.Self-assembled nanowires with giant Rashba split bands.Phys Rev Lett2013;110:036801

[34]

Tanaka T.First-principles prediction of one-dimensional giant Rashba splittings in Bi-adsorbed In atomic chains.Phys Rev B2018;98

[35]

Ast CR,Ernst A.Giant spin splitting through surface alloying.Phys Rev Lett2007;98:186807

AI Summary AI Mindmap
PDF

40

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/