Accelerated development of hard high-entropy alloys with data-driven high-throughput experiments

Yi Liu , Jiong Wang , Bin Xiao , Jintao Shu

Journal of Materials Informatics ›› 2022, Vol. 2 ›› Issue (1) : 3

PDF
Journal of Materials Informatics ›› 2022, Vol. 2 ›› Issue (1) :3 DOI: 10.20517/jmi.2022.03
Research Article

Accelerated development of hard high-entropy alloys with data-driven high-throughput experiments

Author information +
History +
PDF

Abstract

The development of multicomponent alloys with target properties poses a significant challenge, owing to the enormous number of potential component combinations, high costs and the inefficiency of conventional empirical trial-and-error experimental approaches. To tackle this challenge, we develop a machine learning (ML)-guided high-throughput experimental (HTE) approach to accelerate the development of non-equimolar hard CoxCryTizMouWv high-entropy alloys (HEAs). We first develop a set of all-process HTE facilities ranging from multi-tube ingredient assignment to multi-station electrical arc smelting and specimen preparation for bulk alloy samples with discrete compositions. Instead of random or combinatorial composition searching, HEAs with only ~1/28 of all the potential compositions are synthesized in two stages guided by the ML prediction. The final ML models, trained using 138 experimental data, predict the alloy hardness with mean relative errors of 5.3%, 6.3% and 15.4% at high (HV > 800), medium (HV = 600-800) and low (HV < 600) hardness ranges, respectively. In total, 14 superhard HEAs with HV > 900 are discovered by our ML-guided HTE approach. Moreover, the multiple ML models predict the hardness of 3876 hypothetical alloys covering the whole composition range, thereby revealing the systematic component effects based on the complete composition-hardness and descriptor-hardness correlations. The hardening mechanisms are elaborated by analyzing the microstructures of CoCrTiMoW. Furthermore, physical insights can be gained by transitioning from “machine learning” to “learning from machine”. This work demonstrates that our ML-guided HTE approach provides an effective strategy for multicomponent alloy development with a potential hundred-fold overall increase in efficiency at a fraction of the cost compared to conventional methods.

Keywords

High-throughput experiments / machine learning / multicomponent alloys / high-entropy alloys / hard alloys

Cite this article

Download citation ▾
Yi Liu, Jiong Wang, Bin Xiao, Jintao Shu. Accelerated development of hard high-entropy alloys with data-driven high-throughput experiments. Journal of Materials Informatics, 2022, 2(1): 3 DOI:10.20517/jmi.2022.03

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xiang XD,Briceño G.A combinatorial approach to materials discovery.Science1995;268:1738-40

[2]

Xiang X,Zhang X,Wang H.Individualized pixel synthesis and characterization of combinatorial materials chips.Engineering2015;1:225-33

[3]

Wang J,Gao C.Identification of a blue photoluminescent composite material from a combinatorial library.Science1998;279:1712-4

[4]

Zhao L,Wang H.High-throughput synthesis and characterization of a combinatorial materials library in bulk alloys.Metall Mater Trans A2021;52:1159-68

[5]

Liu Y,Suo Z.High-throughput experiments facilitate materials innovation: a review.Sci China Technol Sci2019;62:521-45

[6]

Bligaard T,Ruban AV,Jacobsen KW.Pareto-optimal alloys.Appl Phys Lett2003;83:4527-9

[7]

Reed R,Warnken N.Alloys-by-design: application to nickel-based single crystal superalloys.Acta Mater2009;57:5898-913

[8]

Jong M, Chen W, Geerlings H, Asta M, Persson KA. A database to enable discovery and design of piezoelectric materials.Sci Data2015;2:150053 PMCID:PMC4587372

[9]

Ong SP,Kang B.Li-Fe-P-O2 phase diagram from first principles calculations.Chem Mater2008;20:1798-807

[10]

Ong SP,Jain A.Python materials genomics (pymatgen): a robust, open-source python library for materials analysis.Comput Mater Sci2013;68:314-9

[11]

Brun F,Robson J,Bhadeshia H.Theoretical design of ferritic creep resistant steels using neural network, kinetic, and thermodynamic models.Mater Sci Technol2013;15:547-54

[12]

Sourmail T,Mackay DJC.Neural network model of creep strength of austenitic stainless steels.Mater Sci Technol2013;18:655-63

[13]

Joo M,Bhadeshia HKDH.Domains of steels with identical properties.Mater Manuf Process2009;24:53-8

[14]

Khalaj G,Pouraliakbar H.Prediction of martensite fraction of microalloyed steel by artificial neural networks.NNW2013;23:117-30

[15]

Khalaj G.Artificial neural network to predict the effects of coating parameters on layer thickness of chromium carbonitride coating on pre-nitrided steels.2013;23:779-86

[16]

Faizabadi MJ,Pouraliakbar H.Predictions of toughness and hardness by using chemical composition and tensile properties in microalloyed line pipe steels.2014;25:1993-9

[17]

Pouraliakbar H,Nazerfakhari M.Artificial neural networks for hardness prediction of HAZ with chemical composition and tensile test of X70 pipeline steels.J Iron Steel Res Int2015;22:446-50

[18]

Narimani N,Pouraliakbar H.Predictions of corrosion current density and potential by using chemical composition and corrosion cell characteristics in microalloyed pipeline steels.Measurement2015;62:97-107

[19]

Conduit B,Stone H.Design of a nickel-base superalloy using a neural network.Mater Des2017;131:358-65

[20]

Conduit B,Stone H.Probabilistic design of a molybdenum-base alloy using a neural network.Scr Mater2018;146:82-6

[21]

Conduit B,Baker S.Probabilistic neural network identification of an alloy for direct laser deposition.Mater Des2019;168:107644

[22]

Islam N,Zhuang HL.Machine learning for phase selection in multi-principal element alloys.Comput Mater Sci2018;150:230-5

[23]

Arisoy YM.Machine learning based predictive modeling of machining induced microhardness and grain size in Ti-6Al-4V alloy.Mater Manuf Process2014;30:425-33

[24]

Khalaj G.Computer-aided modeling for predicting layer thickness of a duplex treated ceramic coating on tool steels.Ceram Int2014;40:5515-22

[25]

Isayev O,Toher C,Curtarolo S.Universal fragment descriptors for predicting properties of inorganic crystals.Nat Commun2017;8:15679 PMCID:PMC5465371

[26]

de Jong M,Notestine R.A statistical learning framework for materials science: application to elastic moduli of k-nary inorganic polycrystalline compounds.Sci Rep2016;6:34256 PMCID:PMC5046120

[27]

Correa-baena J,van Duren J.Accelerating materials development via automation, machine learning, and high-performance computing.Joule2018;2:1410-20

[28]

Cantor B,Knight P.Microstructural development in equiatomic multicomponent alloys.Materials Science and Engineering: A2004;375-377:213-8

[29]

Yeh J,Lin S.Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes.Adv Eng Mater2004;6:299-303

[30]

Ranganathan S.Alloyed pleasures: multimetallic cocktails.Curr Sci2003;85:1404-6

[31]

Fazakas É,Varga L.Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X=V or Cr) refractory high-entropy alloys.Int J Refract Metals Hard Mater2014;47:131-8

[32]

Liu Y,Zhang H.Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six high-entropy composites.J Alloys Compd2017;694:869-76

[33]

Chang C,Yeh J.Oxidation Behavior between 700 and 1300 °C of refractory TiZrNbHfTa high-entropy alloys containing aluminum.Adv Eng Mater2018;20:1700948

[34]

Cao P,Tian F,Vitos L.Ab initio study of AlxMoNbTiV high-entropy alloys.J Phys Condens Matter2015;27:075401

[35]

Senkov O,Miracle D,Liaw P.Refractory high-entropy alloys.Intermetallics2010;18:1758-65

[36]

Senkov O,Scott J.Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys.Intermetallics2011;19:698-706

[37]

Zou Y,Spolenak R.Ultrastrong ductile and stable high-entropy alloys at small scales.Nat Commun2015;6:7748 PMCID:PMC4510962

[38]

Wu Y,Chen X.Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys.Mater Des2015;83:651-60

[39]

Melnick A.Thermodynamic design of high-entropy refractory alloys.J Alloys Compd2017;694:223-7

[40]

Han Z,Liu X.Microstructures and mechanical properties of Ti NbMoTaW refractory high-entropy alloys.Materials Science and Engineering: A2018;712:380-5

[41]

Zhang W,Zhang Y.Science and technology in high-entropy alloys.Sci China Mater2018;61:2-22

[42]

Dasari S,Gwalani B.Highly tunable magnetic and mechanical properties in an Al0.3CoFeNi complex concentrated alloy.Materialia2020;12:100755

[43]

Chaudhary V,Banerjee R.Accelerated and conventional development of magnetic high entropy alloys.Mater Today2021;49:231-52

[44]

Sun Y,Liu X.Prediction of Ti-Zr-Nb-Ta high-entropy alloys with desirable hardness by combining machine learning and experimental data.Appl Phys Lett2021;119:201905

[45]

Wen C,Zhang Y.Modeling solid solution strengthening in high entropy alloys using machine learning.Acta Mater2021;212:116917

[46]

MTI Corporation. Available from: https://www.mtixtl.com/ [Last accessed on 23 Mar 2022]

[47]

Kube SA,Uhl D,Mehta A.Phase selection motifs in High Entropy Alloys revealed through combinatorial methods: Large atomic size difference favors BCC over FCC.Acta Mater2019;166:677-86

[48]

Gao MC,Liaw PK.High-entropy alloys: fundamentals and applications. Switzerland: Springer International Publishing; 2016.

[49]

Müller KR,Rätsch G,Schölkopf B.An introduction to kernel-based learning algorithms.IEEE Trans Neural Netw2001;12:181-201

[50]

Chang C.LIBSVM: a library for support vector machines.ACM Trans Intell Syst Technol2011;2:1-27

[51]

Breiman L.Random forests.Mach Learn2001;45:5-32

[52]

Scikit-learn in Python. Available from: https://scikit-learn.org/stable/ [Last accessed on 23 Mar 2022]

[53]

Zhang Y,Lin J,Liaw P.Solid-solution phase formation rules for multi-component alloys.Adv Eng Mater2008;10:534-8

[54]

Yang X.Prediction of high-entropy stabilized solid-solution in multi-component alloys.Mater Chem Phys2012;132:233-8

[55]

Guo S,Lu J.Effect of valence electron concentration on stability of FCC or BCC phase in high entropy alloys.J Appl Phys2011;109:103505

[56]

Database on properties of chemical elements. Available from: http://phases.imet-db.ru/elements/main.aspx [Last accessed on 23 Mar 2022]

AI Summary AI Mindmap
PDF

55

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/