Development of robust surfaces for harsh service environments from the perspective of phase formation and transformation

Ming Lou , Kai Xu , Leilei Chen , Chengyuan Hong , Yuan Yuan , Yujie Du , Yong Du , Keke Chang

Journal of Materials Informatics ›› 2021, Vol. 1 ›› Issue (1) : 5

PDF
Journal of Materials Informatics ›› 2021, Vol. 1 ›› Issue (1) :5 DOI: 10.20517/jmi.2021.02
Review
Review

Development of robust surfaces for harsh service environments from the perspective of phase formation and transformation

Author information +
History +
PDF

Abstract

The rise of the materials genome and materials informatics has enabled the accelerated development of robust surfaces for harsh service environments in the nuclear, aerospace and marine industries. Accurate information on the phase formation and transformation of materials (particularly coating materials) in synthesis and service processes is a prerequisite for the successful optimization of their properties. However, both these processes proceed under non-equilibrium conditions, making the traditional CALPHAD (CALculation of PHAse Diagrams) approach incapable of describing the phase relation and stability. Hence, this study provides a brief review on the recent research advances pertaining to the phase formation during coating deposition, the phase transformation in service and the materials optimization targeted for demanding working conditions. We also summarize the challenges of expanding phase diagram databases with a wide adaptability to metastable phase formation and non-equilibrium phase transformation in multicomponent systems. Through the elaboration of each research case, this review provides new insights into the surface protection of materials serving in harsh environments.

Keywords

Surface coating / harsh service environments / metastable phase formation / non-equilibrium phase transformation / phase diagram databases / CALPHAD / first-principles calculations / high-throughput experiments

Cite this article

Download citation ▾
Ming Lou, Kai Xu, Leilei Chen, Chengyuan Hong, Yuan Yuan, Yujie Du, Yong Du, Keke Chang. Development of robust surfaces for harsh service environments from the perspective of phase formation and transformation. Journal of Materials Informatics, 2021, 1(1): 5 DOI:10.20517/jmi.2021.02

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cattant F,Féron D.Corrosion issues in nuclear industry today..Mater Today2008;11:32-7

[2]

Williams JC.Progress in structural materials for aerospace systems..Acta Mater2003;51:5775-99

[3]

Wood RJ.Erosion-corrosion interactions and their effect on marine and offshore materials..Wear2006;261:1012-23

[4]

Allen T,Meyer M.Materials challenges for nuclear systems..Mater Today2010;13:14-23

[5]

Batchelor AW,Chandrasekaran M.Materials degradation and its control by surface engineering.2011;3rd ed.LondonImperial College Press

[6]

Abu-odeh A,Kirk T.Efficient exploration of the High Entropy Alloy composition-phase space..Acta Mater2018;152:41-57

[7]

Miracle D.A critical review of high entropy alloys and related concepts..Acta Mater2017;122:448-511

[8]

Chen X,Li X.Lowering coefficient of friction in Cu alloys with stable gradient nanostructures..Sci Adv2016;2:e1601942 PMCID:PMC5148212

[9]

Xie Z,Munroe P,Martin P.Deformation mechanisms of TiN multilayer coatings alternated by ductile or stiff interlayers..Acta Mater2008;56:852-61

[10]

Xiong J,Shi S.Machine learning of mechanical properties of steels..Sci China Technol Sci2020;63:1247-55

[11]

Xiong J,Zhang T.A machine-learning approach to predicting and understanding the properties of amorphous metallic alloys..Mater Des2020;187:108378

[12]

Ramakrishna S,Lu W.Materials informatics..J Intell Manuf2019;30:2307-26

[13]

Du Y,Zhao P.Integrated computational materials engineering (ICME) for developing aluminum alloys..J Aeronaut Mater2017;37:1-17(in Chinese)

[14]

Zhang W,Peng Y.Integrated computational materials engineering (ICME) for developing the cemented carbides..Mater Sci Technol2016;24:1-28(in Chinese)

[15]

Li B,Qiu L.Shallow talk about integrated computational materials engineering and materials genome initiative: ideas and practice..Mater China2018;37:264-83(in Chinese)

[16]

de Pablo JJ,Webb MA.New frontiers for the materials genome initiative..npj Comput Mater2019;5:41

[17]

Curtarolo S,Nardelli MB,Sanvito S.The high-throughput highway to computational materials design..Nat Mater2013;12:191-201

[18]

Arslan HK,Wohlgemuth J,Fischer RA.High-throughput fabrication of uniform and homogenous MOF coatings..Adv Funct Mater2011;21:4228-31

[19]

Ludwig A.Discovery of new materials using combinatorial synthesis and high-throughput characterization of thin-film materials libraries combined with computational methods..npj Comput Mater2019;5:70

[20]

White P,Harvey T.A new high-throughput method for corrosion testing..Corros Sci2012;58:327-31

[21]

Shi Y,Rack PD,Liaw PK.High-throughput synthesis and corrosion behavior of sputter-deposited nanocrystalline Al (CoCrFeNi)100- combinatorial high-entropy alloys..Mater Des2020;195:109018

[22]

Zeng Y,Min Q.Diffusion coefficients and atomic mobilities in fcc Ni-Cu-Mo alloys: experiment and modeling..Calphad2020;71:102209

[23]

Mao SS.High throughput combinatorial screening of semiconductor materials..Appl Phys A2011;105:283-8

[24]

Hohenberg P.Inhomogeneous electron gas..Phys Rev1964;136:B864-71

[25]

Kaufman L.Computer calculation of phase diagrams: with special reference to refractory metals.1970;New YorkAcademic Press

[26]

Liu Y,Du C.CALTPP: a general program to calculate thermophysical properties..J Mater Sci Mater Med2020;42:229-40

[27]

Chen L.Phase-field models for microstructure evolution..Annu Rev Mater Res2002;32:113-40

[28]

Szabó B.Introduction to finite element analysis: Formulation, verification and validation.2011;West SussexJohn Wiley & Sons

[29]

Lu X.Remarks on the recent progress of Materials Genome Initiative..Sci Bull2015;60:1966-8

[30]

Liu Z.First-principles calculations and CALPHAD modeling of thermodynamics..J Phase Equilib Diffus2009;30:517-34

[31]

Du Y.Thermophysical properties: key input for ICME and MG..J Phase Equilib Diffus2017;38:601-2

[32]

Du J,Sanders A.CALPHAD-guided alloy design and processing for improved strength and toughness in Titanium Boride (TiB) ceramic alloy containing a ductile phase..Acta Mater2019;171:18-30

[33]

Zhou J,Chen L.Phase equilibria, thermodynamics and microstructure simulation of metastable spinodal decomposition in c-Ti1-xAlxN coatings..Calphad2017;56:92-101

[34]

Povoden-karadeniz E,Warczok P,Jun W.CALPHAD modeling of metastable phases in the Al-Mg-Si system..Calphad2013;43:94-104

[35]

Chang K,Xu K,Yuan Y.Phase diagram, phase transformation and materials development of coatings served in harsh environments..Mater China2021;40:401-16(in Chinese)

[36]

Liu S,Music D.Stress-dependent prediction of metastable phase formation for magnetron-sputtered V1-xAlxN and Ti1-x AlxN thin films..Acta Mater2020;196:313-24

[37]

Lou M,Xu K.Temperature-induced wear transition in ceramic-metal composites..Acta Mater2021;205:116545

[38]

Xu K,Yu M,Du Y.Design of novel NiSiAlY alloys in marine salt-spray environment: Part II. Al-Ni-Si-Y thermodynamic dataset..J Mater Sci Mater Med2021;89:186-98

[39]

Grovenor C,Smith D.The development of grain structure during growth of metallic films..Acta Metall1984;32:773-81

[40]

Einstein A.Elementare Theorie der Brownschen Bewegung..Z Elektrotech Elektrochem1908;14:235-9

[41]

Cantor B.Metastable alloy phases by co-sputtering..Acta Metall1976;24:845-52

[42]

Saksena A,Chang K.Metastable phase formation of Pt-X (X=Ir, Au) thin films..Sci Rep2018;8:10198

[43]

Chang K,Music D,Bolvardi H.Estimation of the activation energy for surface diffusion during metastable phase formation..Acta Mater2015;98:135-40

[44]

Chang K,To Baben M,Bolvardi H.Modeling of metastable phase formation diagrams for sputtered thin films..Sci Technol Adv Mater2016;17:210-9 PMCID:PMC5101876

[45]

Wang SQ,Yang B.Effect of Si addition on microstructure and mechanical properties of Ti-Al-N coating..Int J Refract Metals Hard Mater2010;28:593-6

[46]

Alat E,Comstock RJ,Wolfe DE.Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding..J Nucl Mater2016;478:236-44

[47]

Karimi Aghda S,Unutulmazsoy Y.Unravelling the ion-energy-dependent structure evolution and its implications for the elastic properties of (V,Al)N thin films..Acta Mater2021;214:117003

[48]

Paldey S.Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review..Mater Sci Eng A Struct Mater2003;342:58-79

[49]

Spencer P.Application of a thermochemical data bank system to the calculation of metastable phase formation during PVD of carbide, nitride and boride coatings..High Temp Sci1989;27:295-309

[50]

Liu S,Mráz S.Modeling of metastable phase formation for sputtered Ti1-xAlxN thin films..Acta Mater2019;165:615-25

[51]

Xu K,Du Y,Cai G.Thermodynamic investigation of the Mg-Ni-Zn system by experiments and calculations and its application..J Alloys Compd2019;784:769-87

[52]

Chen L,Huang Y.Thermodynamic description of the Fe-Cu-C system..Calphad2019;64:225-35

[53]

Mayrhofer PH,Karlsson L.Self-organized nanostructures in the Ti-Al-N system..Appl Phys Lett2003;83:2049-51

[54]

Endrino J,Gutiérrez A.Spectral evidence of spinodal decomposition, phase transformation and molecular nitrogen formation in supersaturated TiAlN films upon annealing..Acta Mater2011;59:6287-96

[55]

Attari V,Arroyave R.Exploration of the microstructure space in TiAlZrN ultra-hard nanostructured coatings..Acta Mater2019;174:459-76

[56]

Lind H,Rogström L.High temperature phase decomposition in TixZryAlzN..AIP Adv2014;4:127147

[57]

Kutschej K,Kathrein M,Mitterer C.A new low-friction concept for Ti1-xAlxN based coatings in high-temperature applications..Surf Coat Technol2004;188-189:358-63

[58]

Sui X,Jiang C,Wang K.Effect of Ta content on microstructure, hardness and oxidation resistance of TiAlTaN coatings..Int J Refract Metals Hard Mater2016;58:152-6

[59]

Chen L,Du Y.Influence of Zr on structure, mechanical and thermal properties of Ti-Al-N..Thin Solid Films2011;519:5503-10

[60]

Riedl H,Rachbauer R.Phase stability, mechanical properties and thermal stability of Y alloyed Ti-Al-N coatings..Surf Coat Technol2013;235:174-80

[61]

Xu YX,Pei F,Liu Y.Influence of Hf on the structure, thermal stability and oxidation resistance of Ti-Al-N coatings..Thin Solid Films2014;565:25-31

[62]

Mikula M,Sangiovanni DG.Toughness enhancement in highly NbN-alloyed Ti-Al-N hard coatings..Acta Mater2016;121:59-67

[63]

Zou HK,Chang KK,Du Y.Enhanced hardness and age-hardening of TiAlN coatings through Ru-addition..Scripta Mater2019;162:382-6

[64]

Hannah DC,Podsiadlo P.On the origin of photoluminescence in silicon nanocrystals: pressure-dependent structural and optical studies..Nano Lett2012;12:4200-5

[65]

Tang DM,Wang MS.Mechanical properties of Si nanowires as revealed by in situ transmission electron microscopy and molecular dynamics simulations..Nano Lett2012;12:1898-904

[66]

Zhang Z,Chang K.Deformation induced new pathways in silicon..Nanoscale2019;11:9862-8

[67]

Wang B,Chang K.New deformation-induced nanostructure in silicon..Nano Lett2018;18:4611-7

[68]

Kamimura Y,Iskandarov A,Umeno Y.Peierls stresses estimated via the Peierls-Nabarro model using ab-initio γ-surface and their comparison with experiments..Acta Mater2018;148:355-62

[69]

Leonardi AK.Polymer-based Marine antifouling and fouling release surfaces: strategies for synthesis and modification..Annu Rev Chem Biomol Eng2019;10:241-64

[70]

Verma J,Sahney R.Super protective anti-bacterial coating development with silica-titania nano core-shells..Nanoscale Adv2020;2:4093-105

[71]

Zhu Y,Chang K,Wang L.Prolonged anti-bacterial action by sluggish release of Ag from TiSiN/Ag multilayer coating..J Alloys Compd2019;783:164-72

[72]

Zhu Y,Zhao X,Chang K.Self-healing of TiSiN/Ag coatings induced by Ag..J Am Ceram Soc2019;102:7521-32

[73]

Rajabi A,Syarif J.Development and application of tool wear: A review of the characterization of TiC-based cermets with different binders..Chem Eng J2014;255:445-52

[74]

Liu Y,Sun Q.Tribological behavior and wear mechanism of pure WC at wide range temperature from 25 to 800 °C in vacuum and air environment..Int J Refract Metals Hard Mater2018;71:160-6

[75]

Sveen S,M’saoubi R.Scratch adhesion characteristics of PVD TiAlN deposited on high speed steel, cemented carbide and PCBN substrates..Wear2013;308:133-41

[76]

Emmerlich J,Braun M,Munnik F.A proposal for an unusually stiff and moderately ductile hard coating material: Mo2BC..J Phys D: Appl Phys2009;42:185406

[77]

Xu YX,Pei F,Du Y.Effect of the modulation ratio on the interface structure of TiAlN/TiN and TiAlN/ZrN multilayers: First-principles and experimental investigations..Acta Mater2017;130:281-8

[78]

Hintermann H.Advances and development in CVD technology..Mater Sci Eng A Struct Mater1996;209:366-71

[79]

Qiu L,Wu L.Microstructure, mechanical properties and cutting performances of TiSiCN super-hard nanocomposite coatings deposited using CVD method under the guidance of thermodynamic calculations..Surf Coat Technol2019;378:124956

[80]

Qiu L,Wang S.Mechanical properties and oxidation resistance of chemically vapor deposited TiSiN nanocomposite coating with thermodynamically designed compositions..Int J Refract Metals Hard Mater2019;80:30-9

[81]

Qiu L,Wang S.Through-process modeling and experimental verification of titanium carbonitride coating prepared by moderate temperature chemical vapor deposition..Surf Coat Technol2019;359:278-88

[82]

Sims CT,Hagel WC.Superalloys II: High-temperature materials for aerospace and industrial power.1987;New YorkWiley

[83]

Ruan J,Yang T.Accelerated design of novel W-free high-strength Co-base superalloys with extremely wide γ/γ′ region by machine learning and CALPHAD methods..Acta Mater2020;186:425-33

[84]

Nie H.Development of manufacturing technology on WC-Co hardmetals..Tungsten2019;1:198-212

[85]

Liu K,Yin Z,Yuan J.Effect of Co content on microstructure and mechanical properties of ultrafine grained WC-Co cemented carbide sintered by spark plasma sintering..Ceram Int2018;44:18711-8

[86]

Huang S,Vanmeensel K,Vleugels J.VC, Cr3C2 and NbC doped WC-Co cemented carbides prepared by pulsed electric current sintering..Int J Refract Metals Hard Mater2007;25:417-22

[87]

Zhao C,Liu X,Nie Z.Strengthening cemented carbides by activated nano TaC..Int J Refract Metals Hard Mater2021;95:105449

[88]

Li N,Du Y,Wen G.A new approach to control the segregation of (Ta,W)C cubic phase in ultrafine WC-10Co-0.5Ta cemented carbides..Scripta Mater2015;100:48-50

[89]

Marquis EA,Saxey DW.Nuclear reactor materials at the atomic scale..Mater Today2009;12:30-7

[90]

Karoutas Z,Atwood A.The maturing of nuclear fuel: past to accident tolerant fuel..Prog Nucl Energy2018;102:68-78

[91]

Katoh Y,Szlufarska I.Radiation effects in SiC for nuclear structural applications..Curr Opin Solid State Mater Sci2012;16:143-52

[92]

Nadeau JS.Very high pressure hot pressing of silicon carbide..Am Ceram Soc Bull1973;52:170-4

[93]

Liu M,Wei Y.Preparation of dense and high-purity SiC ceramics by pressureless solid-state-sintering..Ceram Int2019;45:19771-6

[94]

Liu Y,Liu M.Improved sintering ability of SiC ceramics from SiC@Al2O3 core-shell nanoparticles prepared by a slow precipitation method..Ceram Int2019;45:8032-6

[95]

Shao J,Chang K.Fabrication and characterization of SPS sintered SiC-based ceramic from Y3Si2C2-coated SiC powders..J Eur Ceram Soc2018;38:4833-41

[96]

Xu K,Chang K.Thermodynamic description of the sintering aid system in silicon carbide ceramics with the addition of yttrium..J Eur Ceram Soc2019;39:4510-9

[97]

Gerdes MH,Jeitschko W,Künnen B.Magnetic and electrical properties of a new series of rare earth silicide carbides with the compositionR3Si2C2(R=Y, La-Nd, Sm, Gd-Tm)..J Solid State Chem1998;138:201-6

[98]

Xu K,Chang K.Thermodynamic description of the Dy-Si-C system in silicon carbide ceramics..Calphad2020;68:101738

[99]

Xu K,Zhou X.Thermodynamic descriptions of the light rare-earth elements in silicon carbide ceramics..J Am Ceram Soc2020;103:3812-25

[100]

Lipkina K,Geiger E.A study of the oxidation behaviour of FeCrAl-ODS in air and steam environments up to 1400 °C..J Nucl Mater2020;541:152305

[101]

Briggs SA,Littrell KC.A combined APT and SANS investigation of α′ phase precipitation in neutron-irradiated model FeCrAl alloys..Acta Mater2017;129:217-28

[102]

Ejenstam J,Olsson P,Szakalos P.Microstructural stability of Fe-Cr-Al alloys at 450-550 °C..J Nucl Mater2015;457:291-7

[103]

Chang K,Ge F,Du S.Theory-guided bottom-up design of the FeCrAl alloys as accident tolerant fuel cladding materials..J Nucl Mater2019;516:63-72

[104]

Vilar R,Ferreira P,da Silva R.Structure of NiCrAlY coatings deposited on single-crystal alloy turbine blade material by laser cladding..Acta Mater2009;57:5292-302

[105]

Padture NP,Jordan EH.Thermal barrier coatings for gas-turbine engine applications..Science2002;296:280-4

[106]

Pomeroy M.Coatings for gas turbine materials and long term stability issues..Mater Des2005;26:223-31

[107]

Fan L,Yu Z,Li Y.Corrosion behavior of Ti60 alloy under a solid NaCl deposit in wet Oxygen flow at 600 °C..Sci Rep2016;6:29019 PMCID:PMC4928051

[108]

Shu Y,Wu W.Corrosion behavior of pure Cr with a solid NaCl deposit in O2 plus water vapor..Oxid Met2000;54:457-71

[109]

Cao M,Yu Z,Ying L.Studies on the corrosion behavior of Fe-20Cr alloy in NaCl solution spray at 600 °C..Corros Sci2018;133:165-77

[110]

Xu K,Du Y.Design of novel NiSiAlY alloys in marine salt-spray environment: Part I. Al-Si-Y and Ni-Si-Y subsystems..J Mater Sci Mater Med2021;88:66-78

[111]

Yu J,Chen Y.A two-stage predicting model for γ′ solvus temperature of L12-strengthened Co-base superalloys based on machine learning..Intermetallics2019;110:106466

[112]

Yu J,Chen Y,Liu X.Accelerated design of L12-strengthened Co-base superalloys based on machine learning of experimental data..Mater Des2020;195:108996

[113]

Rajan K.Materials informatics..Mater Today2005;8:38-45

AI Summary AI Mindmap
PDF

72

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/