Treefall gap, canopy opening caused by the death of one or more trees, is the dominant form of disturbance in many forest systems worldwide. Gaps play an important role in forest ecology helping to preserve bio- and pedo-diversity, influencing nutrient cycles, and maintaining the complex structure of the late-successional forests. Over the last 30 years, numerous reviews have been written describing gap dynamics. Here we synthesize current understanding on gap dynamics relating to tree regeneration with particular emphasis on gap characteristics considered critical to develop ecologically sustainable forest management systems and to conserve native biodiversity. Specifically, we addressed the question: how do gaps influence forest structure? From the literature reviewed, the size of gaps induces important changes in factors such as light intensity, soil humidity and soil biological properties that influence tree species regeneration and differ in gaps of different sizes. Shadetolerant species can colonize small gaps; shade-intolerant species need large gaps for successful regeneration. Additionally, gap dynamics differ between temperate, boreal, and tropical forests, showing the importance of climate differences in driving forest regeneration. This review summarizes information of use to forest managers who design cutting regimes that mimic natural disturbances and who must consider forest structure, forest climate, and the role of natural disturbance in their designs.
Biochar is normally produced as a by-product of bioenergy. However, if biochar is produced as a co-product with bioenergy from sustainably managed forests and used for soil amendment, it could provide a carbon neutral or even carbon negative solution for current environmental degradation problems. In this paper, we present a comprehensive review of biochar production as a co-product of bioenergy and its implications. We focus on biochar production with reference to biomass availability and sustainability and on biochar utilization for its soil amendment and greenhouse gas emissions reduction properties. Past studies confirm that northwestern Ontario has a sustainable and sufficient supply of biomass feedstock that can be used to produce bioenergy, with biochar as a co-product that can replace fossil fuel consumption, increase soil productivity and sequester carbon in the long run. For the next step, we recommend that comprehensive life cycle assessment of biochar-based bioenergy production, from raw material collection to biochar application, with an extensive economic assessment is necessary for making this technology commercially viable in northwestern Ontario.
Carbon (C) dynamics are central to understanding ecosystem restoration effects within the context of Grain for Green Project (GGP). GGP stared in China since 2003 to improve the environment. Despite its importance, how total forest ecosystem C stock (FECS) develops following land-use changes from cropland to plantation is poorly understood, in particular the relationship of C allocation to pools. We quantified C pools in a chronosequence ranging from 0 to 48 years, using complete above- and below-ground harvests based on detailed field inventory. Stands were chosen along a succession sequence in managed plantations of Korean larch (Larix olgensis Henry.), a native planting species in the Lesser Khingan Mountains, Northeast of China. The FECS of Korean larch plantation (KLP) were dynamic across stand development, changing from 88.2 Mg·ha−1 at cropland, to 183.9 Mg·ha−1 as an average of forest C from 7-through 48-year-old plantation. In a 48-year-old mature KLP, vegetation comprises 48.63% of FECS and accounts for 67.66% of annual net C increment (ANCI). Soil is responsible for 38.19% and 13.53% of those, and with the remainders of 13.18% and 18.81% in down woody materials. Based on comparisons of our estimate to those of others, we conclude that afforestation of Korean larch plantation is a valid approach to sequester carbon.
We investigated a strategy to improve predicting capacity of plot-scale above-ground biomass (AGB) by fusion of LiDAR and Landsat5 TM derived biophysical variables for subtropical rainforest and eucalypts dominated forest in topographically complex landscapes in North-eastern Australia. Investigation was carried out in two study areas separately and in combination. From each plot of both study areas, LiDAR derived structural parameters of vegetation and reflectance of all Landsat bands, vegetation indices were employed. The regression analysis was carried out separately for LiDAR and Landsat derived variables individually and in combination. Strong relationships were found with LiDAR alone for eucalypts dominated forest and combined sites compared to the accuracy of AGB estimates by Landsat data. Fusing LiDAR with Landsat5 TM derived variables increased overall performance for the eucalypt forest and combined sites data by describing extra variation (3% for eucalypt forest and 2% combined sites) of field estimated plot-scale above-ground biomass. In contrast, separate LiDAR and imagery data, and fusion of LiDAR and Landsat data performed poorly across structurally complex closed canopy subtropical rainforest. These findings reinforced that obtaining accurate estimates of above ground biomass using remotely sensed data is a function of the complexity of horizontal and vertical structural diversity of vegetation.
Our research focused on eutrophication control and species screening for riparian zone vegetation restoration in the upstream reach of the Hun River. We studied 16 hardwood plant species to investigate nutrient concentrations and nitrogen and phosphorus accumulations. After about 120 days of growth in pots, these 16 species varied in dry matter biomass, ranging from 15.13 to 637.16 g. Total nitrogen (TN) and total phosphorus (TP) concentrations and distribution in roots, stems and foliage differed both within and between tested species. Mean TN and TP accumulation ranged from 0.167 to 14.730 g per plant and from 0.016 to 1.20 g, respectively. All 16 species, but especially Lespedeza bicolor, Robinia pseudoacacia and Sorbaria sorbifolia had strong potential to remove TN and TP from soil and could be widely utilized for the restoration of destroyed riparian zones in northeast China.
Calorific value of plants is an important parameter for evaluating and indexing material cycles and energy conversion in forest ecosystems. Based on mensuration data of 150 sample sets, we analyzed the calorific value (CV) and ash content (AC) of different parts of Masson pine (Pinus massoniana) trees in southern China using hypothesis testing and regression analysis. CV and AC of different tree parts were almost significantly different (P<0.05). In descending order, ash-free calorific value (AFCV) ranked as foliage > branch > stem bark > root > stem wood, and AC ranked as foliage > stem bark > root > branch > stem wood. CV and AC of stem wood from the top, middle and lower sections of trees differed significantly. CV increased from the top to the lower sections of the trunk while AC decreased. Mean gross calorific value (GCV) and AFCV of aboveground parts were significantly higher than those of belowground parts (roots). The mean GCV, AFCV and AC of a whole tree of Masson pine were 21.54 kJ/g, 21.74 kJ/g and 0.90%, respectively. CV and AC of different tree parts were, to some extent, correlated with tree diameter, height and origin.
This work quantified the total carbon and 12 other sediment characteristics at 10 soil depths, in planted and or natural mangrove forests in comparison with non-vegetated soil for four seasons of the year 2009–2010 in the Vellar-Coleroon estuarine complex, India. The sediment characteristics varied significantly between mangrove-vegetated and non-vegetated habitats or seasons of analysis, but not between soil depths. The mangrove sediments were rich in total carbon and total organic carbon as compared to non-mangrove sediments (p <0.01). Total carbon was 98.2% higher in mature mangroves and 41.8% in planted mangroves than that in non-mangrove soil. Total organic carbon was as much as 2.5 times greater in mature mangroves and 2 times greater in planted mangroves than that in unvegetated soil. Carbon contents also varied many fold by season. Total carbon content was 8.6 times greater during pre-monsoon, 4.1 times greater during post-monsoon and 2.5 times greater during monsoon than during summer (p<0.01 in all cases). Similarly, total organic carbon was 5.9 times greater during pre-monsoon, 3.1 times greater during post-monsoon and 69% greater during monsoon than during summer. In general, higher levels of sediment carbon were recorded during pre and post-monsoon seasons than during other seasons. Total carbon concentration was correlated negatively to temperature, sand and phosphorus (p <0.01); positively correlated with redox potential, silt, clay, C/N ratio, potassium (p <0.01) and nitrogen (p <0.05); but not correlated with soil depth, pH or salinity. This work revealed that the carbon burial was rapid at the annual rate of 2.8% for total carbon, and 6.7% for total organic carbon in mangrove-planted sediment. Clearing of mangroves can result in significantly and rapidly reduced carbon stores. Our study highlights the importance of natural and plantation mangrove stands for conserving sediment carbon in the tropical coastal domain.
Myeloblastosis (MYB) is one of the largest transcribed factor families in plants. To gain an overall picture of the evolution of MYB genes in relict plants, we cloned nine novel MYB genes in Taxodiaceae plants (Taxodium distichum, Taxodium ascendens, Cryptomeria japonica var. Sinensis, Cryptomeria japonica cv. Araucarioides, Cryptomer Japonica, Metasequoia glyptostroboides, Cunninghamia lanceolata, Taiwania cryptomerioides and Glyptostrobus pensilis). The deduced amino acid sequences for MYBs showed that the nine MYB proteins contained two DNA binding domains. The first domain is from amino acid position 29 to 78, wherein three tryptophanes at 33, 53 and 73 were separated by 19 amino acids, respectively. The second domain is from amino acid position 82 to 127, wherein three tryptophanes at 86, 105 and 124 were separated by 18 amino acids, respectively, whereas the first tryptophane at amino acid position 86 is replaced by a phenylalanine. The characterization of these conserved domains at nine MYBs indicated that they all belong to the R2R3-MYB group. The secondary structure analysis showed that α-helix and β-turn are the major motifs of the predicted secondary structure of MYBs. The three dimensional model of each MYB protein showed that the structure is like clip, making it more flexible and mobile. The similarities between the nine MYB proteins in Taxodiaceae were calculated. The highest identical value of 99% is between CjsMYB, CjMYB and CjaMYB, whereas the lowest value of 82% is between TaMYB and ClMYB. According to the phylogenetic tree, the distances between different genera were relatively large whereas those within genera were relatively small. As expected, accessions of the same genus formed a subgroup before being grouped with other genera.
Teak (Tectona grandis L.f.) is a popular hardwood species native to South and South-East Asia. The possible association of amplified fragment length polymorphism (AFLP) marker with morphological variables of eleven important characters viz. girth at breast height (GBH), height of tree, bole height, branch knots, presence of fluting, spiral stem, leaf hair, leaf length/breadth ratio, branching pattern, bark colour and petiole shape for nine natural populations comprising 180 genotypes of teak (9 populations × 20 trees). The phenogram constructed using Euclidean distances for the eleven morphological characters showed that the populations were not grouped according to their geographical origin. The Mantel’s test for pairwise correlation between Euclidean distances of different morphological variables and genetic distances from AFLP data revealed that only petiole character (r =0.269; p =0.046) and height of tree (r =0.200; p =0.001) were significantly correlated with that of AFLP data matrix. The nine populations in this study covered a geographic area of about 1000 km stretch along the Western Ghat of South India. A test of correlation between genetic and geographic distance matrices revealed a significant positive correlation (r =0.475; p =0.009). The lack of perfect congruence between morphological and molecular data except for geographic distance, tree height and petiole character suggested that the morphological system might be useful for the morphotypes management but not appropriate to study the genetic structure of the teak populations.
Development of transgenic plants with tolerance to environmental stress is an important goal of plant biotechnology. Late-embryogenesis-abundant (LEA) proteins accumulate in seeds during late embryogenesis, where they protect cellular membranes and macromolecules against drought. In this work, we transferred the Tamarix androssowii LEA gene into hybrids of Populus davidiana×P. bolleana. We compared relative rates of height growth, chlorophyll fluorescence kinetic parameters, and leaf Na+ levels of six TaLEA-containing lines with non-transferred plants (NT), all grown under 0.8% NaCl stress condition. Survival percentages of transgenic lines were all higher than for NT controls after rehydration and the survival percentage of SL2 was five-fold higher than for NT controls. Seedling height increased 48.7% in SL2 (from the onset of induced stress to the end of the growing season), 31% more than for the NT controls. Chlorophyll fluorescence kinetic parameters showed a marked increase in photosynthetic capacity in SL2 and SL5. Na+ levels in young leaves of transgenic lines were lower than in control NT leaves, but higher in yellow and withered leaves, indicating improved salt tolerance in transgenic lines.
The purpose of this study was to characterize the land use, vegetation structure, and diversity in the Barnowpara Sanctuary, Raipur district, Chhattisgarh, India through the use of satellite remote sensing and GIS. Land cover and vegetation were spatially analyzed by digitally classifying IRS 1D LISS III satellite data using a maximum likelihood algorithm. Later, the variations in structure and diversity in different forest types and classes were quantified by adopting quadratic sampling procedures. Nine land-cover types were delineated: teak forest, dense mixed forest, degraded mixed forest, Sal mixed forest, open mixed forest, young teak plantation, grasslands, agriculture, habitation, and water bodies. The classification accuracy for different land-use classes ranged from 71.23% to 100%. The highest accuracy was observed in water bodies and grassland, followed by habitation and agriculture, teak forest, degraded mixed forest, and dense mixed forest. The accuracy was lower in open mixed forest, and sal mixed forest. Results revealed that density of different forest types varied from 324 to 733 trees ha-1, basal area from 8.13 to 28.87 m2·ha−1 and number of species from 20 to 40. Similarly, the diversity ranged from 1.36 to 2.98, concentration of dominance from 0.06 to 0.49, species richness from 3.88 to 6.86, and beta diversity from 1.29 to 2.21. The sal mixed forest type recorded the highest basal area, diversity was highest in the dense mixed forest, and the teak forest recorded maximum density, which was poor in degraded mixed forests. The study also showed that Normalized Difference Vegetation Index (NDVI) was strongly correlated to with the Shannon Index and species richness.
Dwarf mistletoes are parasitic flowering plants that infect conifers, resulting in substantial loss of growth and mortality. Recently, forest managers in Iran are contemplating whether infection of Juniperus polycarpos C. Koch forests by dwarf mistletoe, Arceuthobium oxycedri (DC.) M. Bieb, influences tree vigor and contributes to insufficient natural regeneration. The present study aimed at assessing the severity of infection and its impact on growth and reproductive output of J. polycarpos. Infected and uninfected trees (n =20 each) were selected for assessment of diameter, height, crown area, and crown volume as well as quantity and quality of cones and seeds. The severity of infection of trees was determined by Hawksworth’s 6-class dwarf mistletoe rating (DMR) system. The DMR system revealed that 40% of the infected sample trees were lightly infected (DMR =1–2) and 60% were moderately infected (DMR =3–4). Growth characteristics did not differ significantly (p > 0.05) between infected and uninfected trees. However, moderate infection affected the reproductive output of J. polycarpos by significantly (p<0.05) reducing the mean number of cones per unit area of the crown, increasing the number of damaged seeds, and reducing seed size and seed germination capacity. We conclude that reproductive output of J. polycarpos is more sensitive than growth characters to moderate infection by juniper dwarf mistletoe, and this might partly account for poor natural regeneration.
A trial of Avicennia officinalis L. with five different spacings was conducted in the newly accreted lands along the western coastline (Patuakhali district) of Bangladesh since 1993 to assess growth performance and the effect of spacing on tree growth. Data on tree density, height, diameter, bole height, crown diameter were recorded and analyzed when the stand was 19 years old. Mean height ranged from 12.89–13.52 m and diameter at breast height (dbh) from 26.57–32.16 cm in plots of different spacings. The mean annual height increment ranged from 0.67–0.71 m, mean annual diameter increment from 1.40–1.69 cm and wood volume from 6.02–10.04 m3·ha−1·a−1 in different treatments. Significantly greater diameter (32.16 cm) and wood volume (10.04 m3·ha−1·a−1) were obtained with wider (2.13 m × 2.13 m) spacing than with closer spacings. But tree growth was unaffected by other spacings. Growth data were also recorded from other A. officinalis plantations raised by Forest Department (FD) on different islands in Patuakhali and Bhola districts of Bangladesh. At these sites, mean annual height increment ranged from 0.33–0.62 m, mean annual diameter increment from 0.72–1.37 cm and wood volume from 1.55–5.73 m3·ha−1·a−1. The growth performance of A. officinalis indicated that the newly accreted lands along the western shoreline may be suitable for raising Avicennia plantations for the enrichment of coastal vegetation.
We estimated water-use efficiency and potential photosynthetic assimilation of Holm oak (Quercus ilex L.) on slopes of NW and SW aspects in a replicated field test examining the effects of intensifying drought in two Mediterranean coppice forests. We used standard techniques for quantifying gas exchange and carbon isotopes in leaves and analyzed total chlorophyll, carotenoids and nitrogen in leaves collected from Mediterranean forests managed under the coppice system. We postulated that responses to drought of coppiced trees would lead to differential responses in physiological traits and that these traits could be used by foresters to adapt to predicted warming and drying in the Mediterranean area. We observed physiological responses of the coppiced trees that suggested acclimation in photosynthetic potential and water-use efficiency: (1) a significant reduction in stomatal conductance (p<0.01) was recorded as the drought increased at the SW site; (2) foliar δ13C increased as drought increased at the SW site (p<0.01); (3) variations in levels of carotenoids and foliar nitrogen, and differences in foliar morphology were recorded, and were tentatively attributed to variation in photosynthetic assimilation between sites. These findings increase knowledge of the capacity for acclimation of managed forests in the Mediterranean region of Europe.
Negative air ions are natural components of the air we breathe. Forests are the main continuous natural source of negative air ions (NAI). The spatio-temporal patterns of negative air ions were explored in Shanghai, based on monthly monitoring in 15 parks from March 2009 to February 2010. In each park, sampling sites were selected in forests and open spaces. The annual variation in negative air ion concentrations (NAIC) showed peak values from June to October and minimum values from December to January. NAIC were highest in summer and autumn, intermediate in spring, and lowest in winter. During spring and summer, NAIC in open spaces were significantly higher in rural areas than those in suburban areas. However, there were no significant differences in NAIC at forest sites among seasons. For open spaces, total suspended particles (TSP) were the dominant determining factor of NAIC in summer, and air temperature and air humidity were the dominant determining factors of NAIC in spring, which were tightly correlated with Shanghai’s ongoing urbanization and its impacts on the environment. It is suggested that urbanization could induce variation in NAIC along the urban-rural gradient, but that may not change the temporal variation pattern. Furthermore, the effects of urbanization on NAIC were limited in non-vegetated or less-vegetated sites, such as open spaces, but not in well-vegetated areas, such as urban forests. Therefore, we suggest that urban greening, especially urban forest, has significant resistance to the effect of urbanization on NAIC.
We studied moist deciduous forests of Chhattisgarh, India (1) to assess the effect of four levels of historic wildland fire frequency (high, medium, low, and no-fire) on regeneration of seedlings in fire affected areas during pre and post-fire seasons, (2) to evaluate vegetation structure and diversity by layer in the four fire frequency zones, (3) to evaluate the impact of fire frequency on the structure of economically important tree species of the region, and (4) to quantify fuel loads by fire frequency level. We classified fire-affected areas into high, medium, low, and no-fire frequency classes based on government records. Tree species were unevenly distributed across fire frequency categories. Shrub density was maximum in zones of high fire frequency and minimum in low-frequency and no-fire zones. Lower tree density after fires indicated that regeneration of seedlings was reduced by fire. The population structure in the high-frequency zone was comprised of seedlings of size class (A) and saplings of size class (B), represented by Diospyros melanoxylon, Dalbergia sissoo, Shorea robusta and Tectona grandis. Younger and older trees were more abundant for Tectona grandis and Dalbargia sissoo after fire, whereas intermediate-aged trees were more abundant prefire, indicating that the latter age-class was thinned by the catastrophic effect of fire. The major contributing components of fuel load included duff litter and small woody branches and twigs on the forest floor. Total fuel load on the forest floor ranged from 2.2 to 3.38 Mg/ha. The net change in fuel load was positive in high- and medium-frequency fire zones and negative under low- and no-fire zones. Repeated fires, however, slowly reduced stand stability. An ecological approach is needed for fire management to restore the no-fire spatial and temporal structure of moist deciduous forests, their species composition and fuel loads. The management approach should incorporate participatory forest management. Use of controlled fire, fire lines and mapping of fire prone areas are fundamental principles of fire hazard reduction in these areas.
Soil organic carbon (SOC) is an effective indicator of soil fertility and productivity, and it varies spatially and temporally in relation to other soil properties. Spatial variability of SOC in the forestlands of northeast China was characterized using geostatistics. Soil samples at the depths of 0–20 cm, 20–40 cm and 40–60 cm were collected from sixty-three temporary plots to evaluate SOC concentration and density (SOCD) and other soil properties. We analyzed correlations between SOC and soil properties. Soil organic carbon concentrations were high. The total amount of C stored in soil (0–60 cm) was 16.23 kg·m−2 with the highest SOCD of 7.98 kgm−2 in topsoil. Soil properties in most cases differed by horizon, suggesting different processes and effects in each horizon. Soil organic carbon had positive relationships with total N, P and K as well as readily available K, but did not show a significant positive correlation with available P. Spatial factors including elevation, slope and aspect affected SOC distribution. Soil organic carbon at 0–60 cm had strong spatial autocorrelation with nugget/sill ratio of 5.7%, and moderate structured dependence was found at 0–20 cm, which indicated the existence of a highly developed spatial structure. Spatial distributions of SOC concentration and SOCD were estimated using regression-kriging, with higher prediction accuracy than ordinary kriging. The fractal dimension of SOC indicated the preferential pattern of SOC distribution, with the greatest spatial heterogeneity and strongest spatial dependence in the northeast-southwest direction.
Deforestation occurs at an alarming rate in upland watersheds of Bangladesh and has many detrimental effects on the environment. This study reports the effects of deforestation on soil biological properties along with some important physicochemical parameters of a southern upland watershed in Bangladesh. Soils were sampled at 4 paired sites, each pair representing a deforested site and a forested site, and having similar topographical characteristics. Significantly fewer (p≤0.001) fungi and bacteria, and lower microbial respiration, active microbial biomass, metabolic and microbial quotients were found in soils of the deforested sites. Soil physical properties such as moisture content, water holding capacity, and chemical properties such as organic matter, total N, available P and EC were also lower in deforested soils. Bulk density and pH were significantly higher in deforested soils. Available Ca and Mg were inconsistent between the two land uses at all the paired sites. Reduced abundance and biomass of soil mesofauna were recorded in deforested soils. However, soil anecic species were more abundant in deforested soils than epigeic and endogeic species, which were more abundant in forested soils than on deforested sites.
A long-term field study was initiated during 1995 at Central Soil Salinity Research Institute, Regional Research Station, Lucknow (26°47′58″ N and 80°46′24″ E) to analyze the effect of agroforestry systems on amelioration of alkali soils. Three agroforestry systems (pastoral, silvipastoral and silvicultural) were compared with the control where no agroforestry system was introduced. Tree-based silvicultural and silvipastoral systems were characterized by tree species Prosopis juliflora and Acacia nilotica along with grass species Leptochloa fusca, Panicum maximum, Trifolium alexandrium and Chloris gayana. Growth of ten-year-old Prosopis juliflora and Acacia nilotica planted in combination with grasses was significantly higher over the silviculture system with the same species. Tree biomass yields of P. juliflora (77.20 t·ha−1) and A. nilotica (63.20 t·ha−1) planted under silvipastoral system were significantly higher than the sole plantation of (64.50 t·ha−1 and 52.75 t·ha−1). Fodder yield under the pastoral system was significantly higher than the silvipastoral system during initial years but it was at par with that of silvipastoral systems after eight years of plantation. The microbial biomass carbon in the soils of silvipastoral systems was significantly higher than in soils under sole plantation of trees and control systems. The Prosopis-based silvipastoral system proved more effective in reducing soil pH, displacing Na+ from the exchange complex, increasing organic carbon and available N, P and K. Improvement in soil physical properties such as bulk density, porosity, soil moisture and infiltration rate was higher in the Prosopis-based silvipastoral system than in the silviculture system or control. On the basis of biomass production and improvement in soil health due to tree + grass systems, silvipastoral agroforestry system could be adopted for sustainable reclamation of highly alkali soils.
We used pre-sowing treatments viz., soaking seeds in concentrated sulphuric acid (CSA), gibberellic acid (GA), combined treatment of CSA + GA and mechanical scarification to overcome seed dormancy and enhance synchronous germination of Macaranga peltata seeds. We analysed percent seed germination data by logistic regression and confirmed that except in GA treatment, time and acid concentration together were crucial for enhancing germination. The combination treatment of CSA and GA resulted in higher percent germination (up to 74%) than either treatment used separately, but produced defective seedlings (26%). Mechanical scarification of seed coat had the greatest impact in enhancing germination (78%) and reducing imbibition time (6 days) against the control (0%). Germination studies and SEM analysis confirmed that seed germination in M. peltata was inhibited by seed coat dormancy.
We analyzed the tolerance of Copaifera lucens seeds to submersion in water to assess the use of this species for direct seeding in riparian forest restoration programs. Seeds were submerged in water for 2, 4, 8, 16 and 32 days or not submerged (control = 0 days of submergence). For the control and at the end of each period of submersion, germination and seedling vigor tests were carried out. For germination tests, seeds were sown in plastic pots containing sand and kept in laboratory conditions. The percentage of seed germination, the germination rate and the average germination time were analyzed. For seedlings, total biomass, leaf area, leaf mass per area and leaf area ratio were analyzed. Submersion time drastically affected the dissolved oxygen content and seed germination. Between 4 and 8 days of submersion there was a decrease from 83.8% to 15.6% in the germination percentage. No seed germination occurred after 16 days of submersion. Although there was a significant decrease in the percentage of seed germination between 4 and 8 days of submersion, seedling vigor was not affected. Seeds of this species were partially tolerant to submersion in water, suggesting that C. lucens is a promising species for direct seeding in riparian forest restoration projects.
To evaluate laboratory germination media, seed germination rates and methodology for both Jatropha curcas and Pongamia pinnata were counted in different germination medium, such as river sand, quartz sand and vermiculite. The seeds of both species were sown at 2-cm depth of river sand, quartz sand and vermiculite. We evaluated methodologies of seeds of J. curcas and P. pinnata by ISTA (International Seed Testing Association). The results showed that river sand is the best medium for tree seeds planted at 2-cm depth of River sand. Vermiculite was second best. On paper media, there were many abnormal seedlings and this media were unsuitable for germination of the larger seeds.
The study evaluated the impact of crude oil pollution on natural regeneration of plant species in a major oil-producing community in the Niger Delta region of Nigeria. Three sites—unpolluted site (US), polluted and untreated site (PUS), and polluted and treated site (PTS)—were purposively chosen for the study. The seedling emergence method was used to evaluate soil seed banks in the various sites at two depths, 0 to 10 cm and 10 to 20 cm. Woody-plant species richness, abundance, and diversity were higher in the US seed bank than in the PUS and PTS seed banks. The highest number of non-woody plants was observed in the US, followed by the PTS, and then the PUS. Both species richness and diversity of non-woody plants were highest at the US, followed by the PUS, and lowest in the PTS. Woody species in the US seed bank were 87.5% and 80% dissimilar with those of the PUS and PTS at 0–10 cm and 10–20 cm respectively. No variation was observed between woody species in the PUS and PTS seed banks. Non-woody species at 0–10 cm US seed bank were 73.08% dissimilar with those of PUS at the two soil depths and 81.48/88.46% dissimilar with those of the 0–10/10–20 cm of the PTS respectively. At 10–20 cm, non-woody species of the US were 69.66% dissimilar with those from each of the two soil depths in PUS; and 73.91/81.82% dissimilar with those of 0–10/10–20 cm of the PTS respectively. Non-woody species variation between the PUS and PTS was higher at 10–20 cm than 0–10 cm. The poor seed bank attributes at the polluted sites demonstrates that crude oil pollution negatively affected the natural regeneration potential of the native flora because soil seed banks serve as the building blocks for plant succession. Thorough remediation and enrichment planting are recommended to support the recovery process of vegetation in the polluted areas.
In Boswellia papyrifera (Del.) Hochst natural stands, we studied the association of parasitic plants with B. papyrifera trees from which frankincense was tapped and marketed for domestic and export markets. Data on the rate of infection of parasitic plants on B. papyrifera was collected in three transects located at separate locations around Baha kar, northern Ethiopia. Each transect had ten circular sample plots of 400 m2 and separated by 100 m. Species composition, DBH, height, crown diameter, number of main, secondary and tertiary branches and number of parasitic plants on individual trees were recorded. Sixteen tree species were recorded in the combined sample plots. The parasitic plant associated with B. papyrifera was identified as Tapinanthus globiferus. This parasite infected 38% of Boswellia trees in sample plots. The infection rate of the parasitic plant varied from 1 to 33 per Boswellia tree. The infection of T. globiferus on B. papyrifera was predominantly limited to tertiary small branchlets arising from secondary branches; parasitic plants were absent on thick main and secondary branches. In all plots, infection of T. globiferus was exclusively limited to Boswellia trees. The influence of T. globiferus parasitism on growth of Boswellia trees and its influence on yield of incense production needs further investigation. Management of natural stands for frankincense production should include measures to reduce infection by T. globiferus.
We recorded 8 genera and over 30 species of bamboo in Sikkim of the reported 23 genera and 125 species in India. Thirty percent of bamboo species were recorded in tropical forests (0–900 m), 40% of species in sub-tropical forests (900–1,800 m), 17% of species in temperate forests (1,800–2,700 m), 9% of species in sub-alpine forests (2,700–3,500 m) and 4% of species in alpine vegetation (3,500–4,500 m). Bamboo is used for various purposes and its versatility qualifies it to be a multiple-use alternative to timber, food for villagers and for tribal in particular. Bamboo is also equally important to Red Panda (Ailurus fulgens), the state animal of Sikkim. We develop a list of bamboos occurring in Sikkim with their vernacular names, distributions and uses in the Himalayan state. However, more extensive study is required to fully describe the bamboo diversity of the Himalayan state.
Farmers in the highlands of Ethiopia often plant Eucalyptus on their farmlands. However, growing Eucalyptus, especially on farmlands suitable for crop production has become a great concern due to its alleged long-term site effects. Our study was conducted at Koga watershed, Mecha District, northwestern Ethiopia to investigate whether croplands afforested with Eucalyptus camaldulensis Dehnh. can be restored for annual crop production after tree harvest. We compared growth and yield of two agricultural crops, barley (Hordeum vulgare L.) and finger millet (Eleusine coracana (L.) Gaertn.), grown in clear-felled stands of E. camaldulensis and continuously cultivated croplands at twelve paired farmlands under a conventional farming system. Plant height and dry matter production were evaluated as indices of crop growth, while grain weight was evaluated as an index of crop yield. Crop growth and yield measurements averaged over all farmlands differed between land-use types. For both crops, plants grown on clear-felled stands were taller than on croplands. Dry matter production and yield were also significantly greater in crops cultivated on clear-felled stands. Cropland aboveground and belowground dry matter productions were lower by 31.8 and 25.4% for barley and 32.8% and 37% for finger millet, respectively. Clear-felled stands gave an average yield of 2.91 t·ha−1 for barley and 3.27 t·ha−1 for finger millet while cropland gave a yield of 1.97 and 2.31 t·ha−1 for barley and finger millet, respectively. Farmers also responded that farm plots on former eucalypt plantations showed greater crop growth and yield than did continuously cultivated croplands. Farmers perceived that Eucalyptus plantations improved soil fertility and they preferred clear-felled stands for crop production and wished to plant Eucalyptus on their farmlands. Our results suggest that conversion of agricultural lands to Eucalyptus plantations can increase post-felling yields of cereal crops.
Forest pasturing of free-roaming livestock is a common practice in many parts of the world, but knowledge on how it affects tree regeneration in boreal forests is lacking. We mapped tree density, livestock site use and accumulated damage to young trees of commercial interest (Norway spruce, Picea abies L. Karst.) on 56 clearcuts inside and outside a fenced forest area used for livestock pasturing in Ringsaker, Norway. Inside the fence 56±1.8% of spruce trees were damaged compared to 37±3.4% outside. Proportion of damaged spruce trees was positively related to cattle use of the clearcut, but not so for sheep. On the most intensively used clearcuts, four out of five trees were damaged. The density of deciduous trees was five times lower inside compared to outside of the fence (varying with plant species). While livestock grazing may reduce resource competition in favour of spruce, the current animal density clearly is impeding forest regeneration in the study area.
White-naped crane (Grus vipio) is a globally threatened species. It is very important to analyze its nest site selection in circumstances where there are multiple disturbances, and also helpful to accumulate valuable information about this threatened species and supply scientific suggestions for conservation and management. We studied nest site selection and the effects of environmental variables on nesting habits of white-naped crane at Zhalong National Nature Reserve, Qiqihar City, Heilongjiang, China, during March-May of 2002–2008. White-naped crane responded and adapted to changes in the quality of the spatial environments of landscape and microhabitat under multiple environmental disturbances. Nest site selection included two scales and two choices, namely the choice of nest site habitat type within the macro-habitat scale and nest site micro-habitat selection within the micro-habitat scale. Nest sites were recorded only in reed marshes. The choice of nest site micro-habitat included three basic elements and six factors, namely incubation element (nest parameters factor, incubation temperature factor and incubation humidity factor), safety element (protection factor and concealment factor), and food element (water factor). Water, remnant reed clusters, and fire were major resource management challenges during the breeding period for the white-naped crane in this Reserve.
ANXA2(AnnexinA2), a calcium-dependent phospholipid binding protein, is involved in various Ca2+-related biological activities. In the present study, full-length cDNA of ANXA2 was isolated from the velvet antler tip tissue of sika deer (Cervus nippon hortulorum); the amino acid sequence and gene expression was analyzed by using bioinformatics and real-time reverse transcriptase polymerase chain reaction (RT-PCR) techniques. Nucleotide sequence analysis reveals that the full-length cDNA of the ANXA2 gene was 1372 bp, of which 1020 bp was in the open-reading frame (ORF) encoding 339 amino acids; its relative molecular weight was 38.3 kDa; and isoelectric point was 6.72. Sequence analysis indicates that the protein includes four conserved tandem-duplication ANX domains. The gene-accession nucleotide sequence number in GenBank is JX315571. Expression analysis by RT-PCR reveals that ANXA2 gene expression has a significant positive correlation with the antler-tissue mineralization process, indicating that this gene may play an important role in the regulation of antler-tissue mineralization.
Region-Growing Algorithms (RGAs) are used to grade the quality of manufactured wood flooring. Traditional RGAs are hampered by problems of long segmentation time and low inspection accuracy caused by neighborhood search. We used morphological reconstruction with the R component to construct a novel flaw segmentation method. We initially designed two template images for low and high thresholds, and these were used for seed optimization and inflation growth, respectively. Then the extraction of the flaw skeleton from the low threshold image was realized by applying the erosion termination rules. The seeds in the flaw skeleton were optimized by the pruning method. The geodesic inflection was applied by the high threshold template to realize rapid growth of the flaw area in the floor plate, and region filling and pruning operations were applied for margin optimization. Experiments were conducted on 512×512, 256×256 and 128×128 pixel sizes, respectively. The 256×256 pixel size proved superior in time-consumption at 0.06 s with accuracy of 100%. But with the region-growing method the same process took 0.22 s with accuracy of 70%. Compared with RGA, our proposed method can realize more accurate segmentation, and the speed and accuracy of segmentation can satisfy the requirements for on-line grading of wood flooring.
We used GIS on a regional scale to estimate and compare supply potentials and costs of small-scale logging systems, a mini-forwarder and a 4-ton truck operated by private logging contractors, and manual logging and a light truck operated by individual forest owners, with the mechanized operational system of the Forest Owners’ Association. Total potential yields of timber and logging residues were estimated as 418,895 m3 and 254,962 m3, respectively. The economic balances were estimated and available amounts were projected as supply potentials from profitable sub-compartments. As a result, available amounts of timber and logging residues were estimated at 376,466 m3 (89.9%) and 203,850 m3 (80.0%), respectively. Because their transport expenses were lower than for other systems the most profitable sub-compartments were operated by private logging contractors who sold logging residues at a plant. The profitable sub-compartments operated by individual forest owners were few because the extracting distances were usually greater than 20 m. Raising logging residue prices from 3,000 yen·m−3 to 4,080 yenn·m−3 or 6,800 yen·m−3, and establishing forest roads, which reduced some extracting distances to less than 20 m, increased the number and area of profitable sub-compartments, and increased available amounts of logging residues.
We developed a three-step classification approach for forest road extraction utilizing LiDAR data. The first step employed the IDW method to interpolate LiDAR point data (first and last pulses) to achieve DSM, DTM and DNTM layers (at 1 m resolution). For this interpolation RMSE was 0.19 m. In the second step, the Support Vector Machine (SVM) was employed to classify the LiDAR data into two classes, road and non-road. For this classification, SVM indicated the merged distance layer with intensity data and yielded better identification of the road position. Assessments of the obtained results showed 63% correctness, 75% completeness and 52% quality of classification. In the next step, road edges were defined in the LiDAR-extracted layers, enabling accurate digitizing of the centerline location. More than 95% of the LiDAR-derived road was digitized within 1.3 m to the field surveyed normal. The proposed approach can provide thorough and accurate road inventory data to support forest management.
We investigated bending moment resistance under diagonal compression load of corner doweled joints with plywood members. Joint members were made of 11-ply hardwood plywood of 19 mm thickness. Dowels were fabricated of Beech and Hornbeam species. Their diameters (6, 8 and 10 mm) and depths of penetration (9, 13 and 17 mm) in joint members were chosen variables in our experiment. By increasing the connector’s diameter from 6 to 8 mm, the bending moment resistance under diagonal compressive load was increased, while it decreased when the diameter was increased from 8 to 10 mm. The bending moment resistance under diagonal compressive load was increased by increasing the dowel’s depth of penetration. Joints made with dowels of Beech had higher resistance than dowels of Hornbeam. Highest resisting moment (45.18 N·m) was recorded for joints assembled with 8 mm Beech dowels penetrating 17 mm into joint members Lowest resisting moment (13.35 N·m) was recorded for joints assembled with 6 mm Hornbeam dowels and penetrating 9 mm into joint members.