The spatial-temporal pattern and influencing factors of negative air ions in urban forests, Shanghai, China
Hong Liang , Xiaoshuang Chen , Junguang Yin , Liangjun Da
Journal of Forestry Research ›› 2014, Vol. 25 ›› Issue (4) : 847 -856.
The spatial-temporal pattern and influencing factors of negative air ions in urban forests, Shanghai, China
Negative air ions are natural components of the air we breathe. Forests are the main continuous natural source of negative air ions (NAI). The spatio-temporal patterns of negative air ions were explored in Shanghai, based on monthly monitoring in 15 parks from March 2009 to February 2010. In each park, sampling sites were selected in forests and open spaces. The annual variation in negative air ion concentrations (NAIC) showed peak values from June to October and minimum values from December to January. NAIC were highest in summer and autumn, intermediate in spring, and lowest in winter. During spring and summer, NAIC in open spaces were significantly higher in rural areas than those in suburban areas. However, there were no significant differences in NAIC at forest sites among seasons. For open spaces, total suspended particles (TSP) were the dominant determining factor of NAIC in summer, and air temperature and air humidity were the dominant determining factors of NAIC in spring, which were tightly correlated with Shanghai’s ongoing urbanization and its impacts on the environment. It is suggested that urbanization could induce variation in NAIC along the urban-rural gradient, but that may not change the temporal variation pattern. Furthermore, the effects of urbanization on NAIC were limited in non-vegetated or less-vegetated sites, such as open spaces, but not in well-vegetated areas, such as urban forests. Therefore, we suggest that urban greening, especially urban forest, has significant resistance to the effect of urbanization on NAIC.
negative air ion concentration / spatial-temporal pattern / urbanization / urban ecosystem / urban greening
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
Hõrrak U, Salm J, Tammet H. 2003. Diurnal variation in the concentration of air ions of different mobility classes in a rural area. Journal of Geophysical Research, 108. DOI: 10.1029/2002JD003240 |
| [11] |
|
| [12] |
Iida K, Stolzenburg M, McMurry P, Dunn MJ, Smith JN, Eisele F, Keady P. 2006. Contribution of ion-induced nucleation to new particle formation: Methodology and its application to atmospheric observations in Boulder, Colorado. Journal of Geophysical Research, 111. DOI: 10.1029/2006JD007167. |
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
Shanghai Statistical Bureau. Shanghai Statistical Year Book 1982–2005. 1983, Shanghai: Chinese Statistical Press |
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
/
| 〈 |
|
〉 |