Fine-scale habitat differentiation shapes the composition, structure and aboveground biomass but not species richness of a tropical Atlantic forest

Alice Cristina Rodrigues , Pedro Manuel Villa , Arshad Ali , Walnir Ferreira-Júnior , Andreza Viana Neri

Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (5) : 1599 -1611.

PDF
Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (5) : 1599 -1611. DOI: 10.1007/s11676-019-00994-x
Original Paper

Fine-scale habitat differentiation shapes the composition, structure and aboveground biomass but not species richness of a tropical Atlantic forest

Author information +
History +
PDF

Abstract

Evaluating the influences of fine-scale habitat heterogeneity on the composition, diversity, structure and functioning of forests is critical to understand how tropical forests will respond to climate change and devise forest management strategies that will enhance biodiversity conservation and aboveground biomass stock. Here, we hypothesized that topographic and soil factors determine fine-scale habitat differentiation, which in turn shape community composition, species richness, structure and aboveground biomass at the local scale in tropical forests. To test this hypothesis, we selected two areas (each 100 × 100 m) with contrasting fine-scale topographic conditions where all trees, palms and lianas with a diameter at breast height ≥ 10 cm were tagged and identified to species. In each selected area, 100 subplots of 10 × 10 m were established. We mainly found that higher topographic variability caused higher habitat differentiation with changes in species composition and community structure, but did not change species richness. Our habitat-scale analyses indicated that, in the less heterogeneous area, the distribution of species was more uniform along a fine-scale topographical gradient with no variation in convexity, which induced changes in structure and aboveground biomass, but not in species richness. The nonsignificant relationship between species richness and aboveground biomass may be attributable to species redundancy or functional dominance. This study suggests that environmental filtering is a fundamental process for shaping community assembly and forest functioning along a local topographical gradient in tropical forests.

Keywords

Community–habitat associations / Convexity / Rarefaction / Topographic variability

Cite this article

Download citation ▾
Alice Cristina Rodrigues, Pedro Manuel Villa, Arshad Ali, Walnir Ferreira-Júnior, Andreza Viana Neri. Fine-scale habitat differentiation shapes the composition, structure and aboveground biomass but not species richness of a tropical Atlantic forest. Journal of Forestry Research, 2019, 31(5): 1599-1611 DOI:10.1007/s11676-019-00994-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ali A, Yan ER, Chen HYH, Chang SX, Zhao YT, Yang XD, Xu MS. Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China. Biogeosciences, 2016, 13: 4627-4635.

[2]

Ali A, Lin SL, He JK, Kong FM, Yu JH, Jiang HS. Climatic water availability is the main limiting factor of biotic attributes across large-scale elevational gradients in tropical forests. Sci Total Environ, 2018, 647: 1211-1221.

[3]

Ali A, Lohbeck M, Yan E-R. Forest strata-dependent functional evenness explains whole-community aboveground biomass through opposing mechanisms. For Ecol Manag, 2018, 424: 439-447.

[4]

Ali A, Lin SL, He JK, Kong FM, Yu JH, Jiang HS. Elucidating space, climate, edaphic and biodiversity effects on aboveground biomass in tropical forests. Land Degrad Dev, 2019

[5]

Anderson-Teixeira KJ, Wang MMH, Mcgarvey JC, LeBauer DS. Carbon dynamics of mature and regrowth tropical forests derived from a pantropical database (TropForC-db). Glob Chang Biol, 2016, 22: 1690-1709.

[6]

Apg IV. An update of the Angiosperm Group classification for the orders and families of flowering plants: APG IV. Biol J Linnean Soc, 2016, 141: 399-436.

[7]

Barton K (2017) ‘MuMIn’: multi-model inference. R package version 1.40.0. https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf. Accessed 15 Feb 2018

[8]

Bates D, Maechler M, Ben Bolker B, Walker S, Christensen RHB, Singmann H, Dai B, Scheipl F, Grothendieck G, Green P, Fox J (2019) ‘lme4’: linear mixed-effects models using ‘Eigen’ and S4. R package version 1.1-21. https://cran.r-project.org/web/packages/lme4/lme4.pdf. Accessed 31 May 2019

[9]

Brown C, Burslem DFRP, Illian JB, Bao L, Brockelman W, Cao M, Chang LW, Dattaraja HS, Davies S, Gunatilleke CVS, Gunatilleke IAUN, Huang J, Kassim AR, LaFrankie JV, Lian J, Lin L, Ma K, Mi X, Nathalang A, Noor S, Ong P, Sukumar R, Su SH, Sun IF, Suresh HS, Tan S, Thompson J, Uriarte M, Valencia R, Yap SL, Ye W, Law R. Multispecies coexistence of trees in tropical forests: spatial signals of topographic niche differentiation increase with environmental heterogeneity. Proc R Soc Lond Ser B Biol sci, 2013, 280: 1764.

[10]

Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach, 2002, New York: Springer.

[11]

Burnham KP, Anderson DR, Huyvaert KP. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol, 2011, 65: 23-35.

[12]

Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr, 2014, 84: 45-67.

[13]

Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE. Towards a worldwide wood economics spectrum. Ecol Lett, 2009, 12: 351-366.

[14]

Chave J, Réjou-Méchain M, Búrquez A Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Chang Biol, 2014, 20: 3177-3190.

[15]

Chiang J-M, Spasojevic MJ, Muller-Landau HC, Sun I-F, Lin Y, Su S-H, Chen Z-S, Chen C-T, Swenson NG, McEwan RW. Functional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forest. Oecologia, 2016, 182: 829-840.

[16]

Clarke KR. Non-parametric multivariate analyses of changes in community structure. Aust J Ecol, 1993, 18: 117-143.

[17]

Colwell RK, Chao A, Gotelli NJ, Lin SY, Mao CH, Chazdon RL, Longino JT. Models and estimators linking individual-based and sample based rarefaction, extrapolation and comparison of assemblages. J Plant Ecol, 2012, 5: 3-21.

[18]

Cornwell WK, Ackerly DD. A link between plant traits and abundance: evidence from coastal California woody plants. J Ecol, 2010, 98: 814-821.

[19]

Crawley MJ. The R book, 2012 2 London: Wiley.

[20]

De’ath G. Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology, 2002, 83: 1105-1117.

[21]

EMBRAPA. Manual de métodos de análises de solo, 1997 2 Rio de Janeiro: Centro Nacional de Pesquisa de Solos, Empresa Brasileira de Pesquisa Agropecuária.

[22]

Grime JP. Competitive exclusion in herbaceous vegetation. Nature, 1973, 242: 344-347.

[23]

Guo Y, Wang B, Mallik AU, Huang F, Xiang W, Ding T, Wen S, Lu S, Li D, He Y, Li X. Topographic species-habitat associations of tree species in a heterogeneous tropical forest. J Plant Ecol, 2017, 57: 1-10.

[24]

Hsieh TC, Ma KH, Chao A. (2016) ‘iNEXT’: iNterpolation and EXTrapolation for species diversity. R package version 2.0.12.. https://cran.r-project.org/web/packages/iNEXT/iNEXT.pdf Accessed 10 Dec 2017

[25]

Husson F, Josse J, Le S, Mazet J (2018) “FactoMineR” package multivariate: exploratory data analysis and data mining. RStudio package version 1.0.14. https://cran.r-project.org/web/packages/FactoMineR/FactoMineR.pdf

[26]

John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB. Soil nutrients influence spatial distributions of tropical tree species. Proc Natl Acad Sci USA, 2007, 104: 864-869.

[27]

Jucker T, Bongalov B, Burslem DFRP, Nilus R, Dalponte M, Lewis SL, Phillips OL, Qie L, Coomes DA. Topography shapes the structure, composition and function of tropical forest landscapes. Ecol Lett, 2018, 21: 989-1000.

[28]

Kahmen H, Faig W. Surveying, 1988, Berlin: Walter Gruyter e Co 578

[29]

Katabuchi M, Kurokawa H, Davies SJ, Tan S, Nakashizuka T. Soil resource availability shapes community trait structure in a species-rich dipterocarp forest. J Ecol, 2012, 100: 643-665.

[30]

Lan GY, Hu YH, Cao M, Zhu H. Topography related spatial distribution of dominant tree species in a tropical seasonal rain forest in China. For Ecol Manag, 2011, 262: 1507-1513.

[31]

Larsen DR, Speckman PL. Multivariate regression trees for analysis of abundance data. Biometrics, 2004, 60: 543-549.

[32]

Laurance WF. Conserving the hottest of the hotspots. Biol Conserv, 2009, 142: 1137.

[33]

Leuschner C, Moser G, Bertsch C, Röderstein M, Hertel D. Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic Appl Ecol, 2007, 8: 219-230.

[34]

Lewis SL, Edwards DP, Galbraith D. Increasing human dominance of tropical forests. Science, 2015, 349: 827-832.

[35]

Liu J, Yunhong T, Slik JWF. Topography related habitat associations of tree species traits, composition and diversity in a Chinese tropical forest. For Ecol Manag, 2014, 330: 75-81.

[36]

Lohbeck M, Bongers F, Martinez-Ramos M, Poorter L. The importance of biodiversity and dominance for multiple ecosystem functions in a human-modified tropical landscape. Ecology, 2016, 97: 2772-2779.

[37]

Magnago LFS, Magrach A, Laurance WF, Martins SV, Meira-Neto JA, Simonelli M, Edwards DP. Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under REDD+?. Glob Chang Biol, 2015, 21: 3455-3468.

[38]

Martinez-Arbizu P (2019) pairwiseAdonis: pairwise multilevel comparison using adonis. R package version 2.4-5. https://github.com/pmartinezarbizu/pairwiseAdonis

[39]

McEwan RW, Muller RN. Spatial and temporal dynamics in canopy dominance of an old-growth mixed mesophytic forest. Can J For Res, 2006, 36: 1536-1550.

[40]

Moeslund JE, Arge L, Bøcher PK, Dalgaard T, Svenning J-C. Topography as a driver of local terrestrial vascular plant diversity patterns. Nord J Bot, 2013, 31: 129-144.

[41]

Muledi JI, Bauman D, Drouet T, Vleminckx J, Jacobs A, Lejoly J, Meerts P, Shutcha MN. Fine-scale habitats influence tree species assemblage in a Miombo forest. J Plant Ecol, 2017, 10: 958-969.

[42]

Murray-Smith C, Brummitt NA, Oliveira-Filho AT, Bachman S, Moat J, Lughadha EM, Lucas EJ. Plant diversity hotspots in the Atlantic Coastal Forests of Brazil. Conserv Biol, 2009, 23: 151-163.

[43]

Nychka D, Furrer R, Paige J, Sain S (2019). ‘fields’ package: tools for spatial data. R package version 2.4-5. https://cran.r-project.org/web/packages/fields/fields.pdf. Accessed 10 Feb 2018

[44]

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner E (2018) ‘Vegan’: community ecology package. R package version 2.4-6. https://cran.r-project.org/web/packages/vegan/vegan.pdf. Accessed 5 Feb 2018

[45]

Paquette A, Messier C. The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob Ecol Biog, 2011, 20: 170-180.

[46]

Paula A, Silva AF, Souza AL, Santos FAM. Alterações florísticas ocorridas num período de quatorze anos na vegetação arbórea de uma floresta estacional semidecidual em Viçosa-MG. Rev Árvore, 2002, 26: 743-749.

[47]

Pausas JG, Austin MP. Patterns of plant species richness in relation to different environments: an appraisal. J Veg Sci, 2001, 12: 153-166.

[48]

Pinheiro J, Bates D (2017) ‘nlme’: linear and nonlinear mixed effects models. R package version 3.1-131. https://cran.r-project.org/web/packages/nlme/nlme.pdf. Accessed 20 Jan 2018

[49]

Poorter L. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests. New Phytol, 2009, 181: 890-900.

[50]

Poorter L, van der Sande MT, Thompson J, Arets EJMM, Alarcón A, Álvarez-Sánchez J, Ascarrunz N, Balvanera P, Barajas-Guzmán G, Boit A, Bongers F, Carvalho FA, Casanoves F, Cornejo-Tenorio G, Costa FRC, de Castilho CV, Duivenvoorden JF, Dutrieux LP, Enquist BJ, Fernández-Méndez F, Finegan B, Gormley LHL, Healey JR, Hoosbeek MR, Ibarra-Manríquez G, Junqueira AB, Levis C, Licona JC, Lisboa LS, Magnusson WE, Martínez-Ramos M, Martínez-Yrizar A, Martorano LG, Maskell LC, Mazzei L, Meave JA, Mora F, Muñoz R, Nytch C, Pansonato MP, Parr TW, Paz H, Pérez-García EA, Rentería LY, Rodríguez-Velazquez J, Rozendaal DMA, Ruschel AR, Sakschewski B, Salgado-Negret B, Schietti J, Simões M, Sinclair FL, Souza PF, Souza FC, Stropp J, ter Steege H, Swenson NG, Thonicke K, Toledo M, Uriarte M, van der Hout P, Walker P, Zamora N, Peña-Claros M. Diversity enhances carbon storage in tropical forests. Glob Ecol Biogeog, 2015, 24: 1314-1328.

[51]

Poorter L, van der Sande MT, Arets EJMM, Ascarrunz N, Enquist BJ, Finegan B, Licona JC, Martínez-Ramos M, Mazzei L, Meave JA, Muñoz R, Nytch CJ, de Oliveira AA, Pérez-García EA, Prado-Junior J, Rodríguez-Velázques J, Ruschel AR, Salgado-Negret B, Schiavini I, Swenson NG, Tenorio EA, Thompson J, Toledo M, Uriarte M, van der Hout P, Zimmerman JK, Peña-Claros M. Biodiversity and climate determine the functioning of Neotropical forests. Glob Ecol Biogeogr, 2017, 26: 1423-1434.

[52]

Punchi-Manage R, Getzin S, Wiegand T, Kanagaraj R, Savitri Gunatilleke CV, Nimal Gunatilleke IA, Wiegand K, Huth A. Effects of topography on structuring local species assemblages in a Sri Lankan mixed dipterocarp forest. J Ecol, 2013, 101: 149-160.

[53]

R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 15 Feb 2018

[54]

Reich PB. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J Ecol, 2014, 102: 275-301.

[55]

Réjou-Méchain M, Tanguy A, Piponiot C, Chave J, Hérault B. biomass: an r package for estimating above-ground biomass and its uncertainty in tropical forests. Methods Ecol Evol, 2017, 8: 1163-1167.

[56]

Ribeiro MC, Martensen AC, Metzger JP, Tabarelli M, Scarano F, Fortin M-J. Zachos F, Habel J. The Brazilian Atlantic Forest: a shrinking biodiversity hotspot. Biodiversity hotspots, 2011, Berlin: Springer.

[57]

Ripley B (2017) ‘MASS’: support functions and datasets for venables and RIPLEY’s MASS. R package version 7.3-48. https://cran.r-project.org/web/packages/MASS/MASS.pdf. Accessed 1 Feb 2018

[58]

Rodrigues AC, Villa PM, Viana NA. Fine-scale topography shape richness, community composition, stem and biomass hyperdominant species in Brazilian Atlantic forest. Ecol Indic, 2019, 102: 208-217.

[59]

Rozendaal DMA, Bongers F, Aide TM, Alvarez-Dávila E, Ascarrunz N, Balvanera P, Becknell JM, Bentos TV, Brancalion PHS, Cabral GAL, Calvo-Rodriguez S, Chave J, César RG, Chazdon RL, Condit R, Dallinga JS, de Almeida-Cortez JS, Jong B, Oliveira A, Denslow JS, Dent DH, DeWalt SJ, Dupuy JM, Durán SM, Dutrieux LP, Espírito-Santo MM, Fandino MC, Fernandes GW, Finegan B, García H, Gonzalez N, Moser VG, Hall JS, Hernández-Stefanoni JL, Hubbell S, Jakovac CC, Hernández AJ, Junqueira AB, Kennard D, Larpin D, Letcher SG, Licona J-C, Lebrija-Trejos E, Marín-Spiotta E, Martínez-Ramos M, Massoca PES, Meave JA, Mesquita RCG, Mora F, Müller SC, Muñoz R, de Oliveira Neto SN, Norden N, Nunes YRF, Ochoa-Gaona S, Ortiz-Malavassi E, Ostertag R, Peña-Claros M, Pérez-García EA, Piotto D, Powers JS, Aguilar-Cano J, Rodriguez-Buritica S, Rodríguez-Velázquez J, Romero-Romero MA, Ruíz Jorge, Sanchez-Azofeifa A, de Almeida AS, Silver WL, Schwartz NB, Thomas WW, Toledo M, Uriarte M, Sampaio EVS, van Breugel M, van der Wal H, Martins SV, Veloso MDM, Vester HFM, Vicentini A, Vieira ICG, Villa PM, Williamson GB, Zanini KJ, Zimmerman J, Poorter L. Biodiversity recovery of Neotropical secondary forests. Sci Adv, 2019, 5: 3114.

[60]

Scarano FR, Ceotto P. Brazilian Atlantic forest: impact, vulnerability, and adaptation to climate change. Biodivers Conserv, 2015, 24: 2319.

[61]

Therneau T, Atkinson B, Ripley B (2017) ‘rpart’: recursive partitioning and regression trees. R package version 4.1-11. https://CRAN.R-project.org/package=rpart. Accessed 4 March 2018

[62]

Tilman D. The ecological consequences of changes in biodiversity: a search for general principles. Ecology, 1999, 80: 1455-1474.

[63]

Toledo M, Peña-Claros M, Bongers F, Alarcón A, Balcázar J, Chuviña J, Leaño C, Licona JC, Poorter L. Distribution patterns of tropical woody species in response to climatic and edaphic gradients. J Ecol, 2012, 100: 253-263.

[64]

Villa PM, Martins SV, Oliveira Neto SN, Rodrigues AC, Martorano L, Delgado L, Cancio NM, Gastauerg M. Intensification of shifting cultivation reduces forest resilience in the northern Amazon. For Ecol Manag, 2018, 430: 312-320.

[65]

Wang Q, Punchi-Manage R, Lu Z, Franklin SB, Wang Z, Li Y, Chi X, Bao D, Guo Y, Xu JLY, Qiao X, Jiang M. Effects of topography on structuring species assemblages in a subtropical forest. J Plant Ecol, 2016, 10: 440-449.

[66]

Wickham H, François R, Henry L, Müller K (2018). ‘dplyr’ package: a grammar of data manipulation. R package version 7.3-48. https://cran.r-project.org/web/packages/dplyr/dplyr.pdf. Accessed 15 Feb 2018

[67]

Williams BM, Houseman GR. Experimental evidence that soil heterogeneity enhances plant diversity during community assembly. J Plant Ecol, 2014, 7: 461-469.

[68]

Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J (2009) Data from: towards a worldwide wood economics spectrum. Dryad digital repository. https://doi.org/10.5061/dryad.234. Accessed 3 Dec 2017

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/