Transcriptome exploration to provide a resource for the study of Auricularia heimuer

Jian Zhang , Tingting Sun , Shixin Wang , Li Zou

Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (5) : 1881 -1887.

PDF
Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (5) : 1881 -1887. DOI: 10.1007/s11676-019-00989-8
Original Paper

Transcriptome exploration to provide a resource for the study of Auricularia heimuer

Author information +
History +
PDF

Abstract

Auricularia heimuer, an edible jelly fungus, is in considerable demand in Asia due to its high nutritive, economic and medicinal values. RNA-Seq was used to investigate and analyze the mycelium transcriptome of A. heimuer for gene discovery. A total of 26,857 unigenes with an N50 length of 1333 bp were assembled by de novo sequencing. In addition, unigenes were annotated by publicly available databases, including gene descriptions, gene ontology (GO), clusters of orthologous group (COG), Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways, and protein family (Pfam) terms. A. heimuer was also studied for its wood degradation ability. Thirty-eight putative FOLymes (fungal oxidative lignin enzymes) and 251 CAZymes (carbohydrate-active enzymes) were located from A. heimuer transcriptome. Our study provides a comprehensive sequence resource for A. heimuer at the transcriptional level, which will lay a strong foundation for functional genomics studies and gene discovery of this promising fungus.

Keywords

Auricularia heimuer / Transcriptome / Carbohydrate active enzymes / Lignin degradation / Next-generation sequencing

Cite this article

Download citation ▾
Jian Zhang, Tingting Sun, Shixin Wang, Li Zou. Transcriptome exploration to provide a resource for the study of Auricularia heimuer. Journal of Forestry Research, 2019, 31(5): 1881-1887 DOI:10.1007/s11676-019-00989-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Acharya K, Samui K, Rai M, Dutta B, Acharya R. Antioxidant and nitric oxide synthase activation properties of Auricularia auricula. Indian J Exp Biol, 2004, 42: 538-540.

[2]

Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res, 2009, 37: D233-238.

[3]

Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 2005, 21: 3674-3676.

[4]

Fan XZ, Zhou Y, Xiao Y, Xu ZY, Bian YB. Cloning, expression and phylogenetic analysis of a divergent laccase multigene family in Auricularia auricula-judae. Microbiol Res, 2014, 169: 453-462.

[5]

Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J. Pfam: the protein families database. Nucleic Acids Res, 2014, 42: D222-D230.

[6]

Hatakka and Hamm. Hatakka A, Hammel KE (2011) Fungal biodegradation of lignocelluloses. Mycota. Industrial applications, 2011 2 Berlin: Springer 319 340

[7]

Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J, 1991, 280: 309-316.

[8]

Iseli C, Jongeneel CV, Bucher P (1999) ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. In: Proceedings international conference on intelligent systems for molecular biology, pp 138–148.

[9]

Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wasilewska MW, Cho NS, Hofrichter M, Rogalski J. Biodegradation of lignin by white rot fungi. Fungal Genet Biol, 1999, 27: 175-185.

[10]

Levasseur A, Piumi F, Coutinho PM, Rancurel C, Asther M, Delattre M, Henrissat B, Pontarotti P, Asther M, Record E. FOLy: an integrated database for the classification and functional annotation of fungal oxidoreductases potentially involved in the degradation of lignin and related aromatic compounds. Fungal Genet Biol, 2008, 45: 638-645.

[11]

Li RQ, Zhu HM, Ruan J, Qian WJ, Fang XD, Shi ZB, Li YR, Li ST, Gao S, Kristiansen K, Li SG, Yang HM, Wang J, Wang J. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res, 2010, 20: 265-272.

[12]

Li XB, Luo J, Yan TL, Xiang L, Jin F, Qin DH, Sun CB, Xie M. Deep sequencing-based analysis of the Cymbidium ensifolium floral transcriptome. PLoS ONE, 2013, 8: e85480.

[13]

Liu L, Li YH, Li SL, Ni H, He YM, Pong R, Lin DN, Lu LH, Law M. Comparison of next-generation sequencing systems. J Biomed Biotechnol, 2012, 2012: 251364.

[14]

MacLean D, Jones JD, Studholme DJ. Application of ‘next-generation’ sequencing technologies to microbial genetics. Nat Rev Microbiol, 2009, 7: 287-296.

[15]

Martinez D, Larrondo LF, PutnamN Gelpke MDS, Huang K, Chapman J. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol, 2004, 22: 695-700.

[16]

Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet, 2010, 11: 31-46.

[17]

Misaki A, Kakuta M, Sasaki T, Tanaka M, Miyaji H. Studies on interrelation of structure and antitumor effects of polysaccharides: antitumor action of periodate-modified, branched-beta-D-glucan of Auricularia auricula-judae, and other polysaccharides containing-glycosidic linkages. Carbohydr Res, 1981, 92: 115-129.

[18]

Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res-NAR, 2007, 35: 182-185.

[19]

Munk L, Sitarz AK, Kalyani DC, Mikkelsen JD, Meyer AS. Can laccases catalyze bond cleavage in lignin?. Biotechnol Adv, 2015, 33: 13-24.

[20]

Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 1999, 27: 29-34.

[21]

Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci United States of America, 1977, 74: 5463-5467.

[22]

Ukai S, Kiho T, Hara C, Kuruma I, Tanaka Y. Polysaccharides in fungi XIV. Anti-inflammatory effect of the polysaccharides from the fruit bodies of several fungi. J Pharmacobio-Dyn, 1983, 6: 983-990.

[23]

Wang M, Gu BL, Huang J, Jiang S, Chen YJ, Yin YL, Pan YF, Yu GJ, Li YM, Wong BHC, Liang Y, Sun H. Transcriptome and proteome exploration to provide a resource for the study of Agrocybe aegerita. PLoS ONE, 2013, 2: e56686.

[24]

Wang F, Li DL, Wang ZY, Dong AR, Liu LH, Wang BY, Chen QL, Liu XH. Transcriptomic Analysis of the Rice White Tip Nematode, Aphelenchoides besseyi (Nematoda: Aphelenchoididae). PLoS ONE, 2014, 9: e91591.

[25]

Yang Y, Xu M, Luo QF, Wang J, Li HG. De novo transcriptome analysis of Liriodendron chinense petals and leaves by Illumina sequencing. Gene, 2014, 534: 155-162.

[26]

Ye J, Fang L, Zheng HK, Zhang Y, Chen J, Zhang ZJ, Wang J, Li ST, Li RQ, Bolund L, Wang J. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res, 2006, 34: W293-297.

[27]

Yin YL, Yu GJ, Chen YJ, Jiang S, Wang M, Jin YX, Lan XQ, Liang Y, Sun H. Genome-wide transcriptome and proteome analysis on different developmental stages of Cordyceps militaris. PLoS ONE, 2012, 7: e51853.

[28]

Yoon SJ, Yu MA, Pyun YR, Hwang JK, Chu DC, Juneja LR, Mourao PAS. The nontoxic mushroom Auricularia auricula contains a polysaccharide with anticoagulant activity mediated by antithrombin. Thrombosis Res, 2003, 112: 151-158.

[29]

Yu GJ, Wang M, Huang J, Yin YL, Chen YJ, Jiang S, Jin YX, Lan XQ, Wong BH, Liang Y, Sun H. Deep insight into the Ganoderma lucidum by comprehensive analysis of its transcriptome. PLoS ONE, 2012, 7: e44031.

[30]

Yuan Z, He P, Cui J, Takeuchi H. Hypoglycemic effect of water-soluble polysaccharide from Auricularia auricula-judae Quel. on genetically diabetic KK-Ay mice. Biosci Biotechnol Biochem, 1998, 62: 1898-1903.

[31]

Yuan Y, Wu F, Si J, Zhao YF, Dai YC. Whole genome sequence of Auricularia heimuer (Basidiomycota, Fungi), the third most important cultivated mushroom worldwide. Genomics, 2019, 111: 50-58.

[32]

Zeng WC, Zhang Z, Gao H, Jia LR, Chen WY. Characterization of antioxidant polysaccharides from Auricularia auricula using microwave-assisted extraction. Carbohydr Polym, 2012, 89: 694-700.

[33]

Zhang H, Wang ZY, Yang L, Yang X, Wang X, Zhang Z. In Vitro Antioxidant Activities of Sulfated Derivatives of Polysaccharides Extracted from Auricularia auricula. Int J Mol Sci, 2011, 12: 3288-3302.

[34]

Zhong MT, Liu B, Wang XL, Liu L, Lun YZ, Li XY, Ning AH, Cao J, Huang M. De novo characterization of Lentinula edodes C91–3 transcriptome by deep Solexa sequencing. Biochem Biophys Res Commun, 2013, 431: 111-115.

[35]

Zou L, Sun TT, Li DL, Tan Y, Zhang GY, Wang F, Zhang J. De novo transcriptome analysis of Inonotus baumii by RNA-seq. J Biosci Bioeng, 2016, 121: 380-384.

AI Summary AI Mindmap
PDF

251

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/