Environmental control of daily stem radius increment in the montane conifer Cedrus libani

Aylin Güney , Serkan Gülsoy , Özdemir Şentürk , Armin Niessner , Manfred Küppers

Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (4) : 1159 -1171.

PDF
Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (4) : 1159 -1171. DOI: 10.1007/s11676-019-00983-0
Original Paper

Environmental control of daily stem radius increment in the montane conifer Cedrus libani

Author information +
History +
PDF

Abstract

Growth response of conifers is species- specific and depends on site and climate conditions. Studies on daily radial stem growth use different analytical approaches to determine species reactions to environmental conditions. These results contribute to improve forecasts of tree growth under a changing climate. During 2013 and 2014, radial stem growth of 33 mature Cedrus libani individuals growing under different climatic conditions in Turkey and Germany was monitored hourly using high precision point dendrometers. Stem radius increments (SRI) were extracted from dendrometer readings. The annual course of SRI showed site-specific patterns with mean daily values ranging between 9.9 and 29.3 µm over the growing season. Correlation and principal component analyses indicated that humidity and low temperatures during the growing season favored SRI. Multiple regression analyses demonstrated that precipitation and relative air humidity were the most important factors influencing daily SRI. Climate-growth relationships were further evaluated using the regression tree method. Precipitation was the most significant factor on daily SRI for all sites. The close coupling of SRI to relative air humidity and precipitation underlines the importance of stem water status for radial stem growth of C. libani which is native to regions with summer drought. It further explains the superior growth of C. libani in Germany.

Keywords

CART / Climate-growth relationship / Dendrometer / Lebanon cedar / Regression tree

Cite this article

Download citation ▾
Aylin Güney, Serkan Gülsoy, Özdemir Şentürk, Armin Niessner, Manfred Küppers. Environmental control of daily stem radius increment in the montane conifer Cedrus libani. Journal of Forestry Research, 2019, 31(4): 1159-1171 DOI:10.1007/s11676-019-00983-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aertsen W, Kint V, Van Orshoven J, Özkan K, Muys B. Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecol Modell, 2010, 221: 1119-1130.

[2]

Akkemik Ü. Tree rings of Cedrus libani at the northern boundary of its natural distribution. IAWA J, 2003, 24: 63-73.

[3]

Atalay İ (1987) Sedir (Cedrus libani A. Rich) Ormanlarının Yayılış Gösterdiği Alanlar ve Yakın Çevresinin Genel Ekolojik Özellikleri ile Sedir Tohum Transfer Rejyonlaması [General ecological properties of natural occurrence areas of cedar (Cedrus libani A. Rich) forests and regioning of seed transfer of cedar in Turkey. In Turkish with English summary]. Orman Genel Müdürlüğü Yayını, Ankara, p 663

[4]

Bär A, Pape R, Bräuning A, Löffler J. Growth-ring variations of dwarf shrubs reflect regional climate signals in alpine environments rather than topoclimatic differences. J Biogeogr, 2008, 35: 625-636.

[5]

Basaran MA, Basaran S, Bas N, Kaçar S, Tolunay D, Makineci E, Kavgaci A, Deniz G. Determining the actual state of Elmali cedar research forest by GIS based digital maps (in Turkish with English abstract). Çevre ve Orman Bakanlığı Yayın, 2008, 353: 1-331.

[6]

Betsch P, Bonal D, Breda N, Montpied P, Peiffer M, Tuzet A, Granier A. Drought effects on water relations in beech: the contribution of exchangeable water reservoirs. Agric For Meteorol, 2011, 151: 531-543.

[7]

Bouriaud O, Leban JM, Bert D, Deleuze C. Intra-annual variations in climate influence growth and wood density of Norway spruce. Tree Physiol, 2005, 25: 651-660.

[8]

Boydak M. Regeneration of Lebanon cedar (Cedrus libani A. Rich.) on karstic lands in Turkey. For Ecol Manag, 2003, 178: 231-243.

[9]

Boydak M (2007) Reforestation of Lebanon cedar (Cedrus libani A. Rich.) in bare karstic lands by broadcast seeding in Turkey. In: Leone V, Lovreglio R (eds) Proceedings of the international workshop MEDPINE 3: conservation, regeneration and restoration of Mediterranean pines and their ecosystems. CIHEAM, Bari, pp 33–42 (Options Méditerranéennes: Série A. Séminaires Méditerranéens; n. 75)

[10]

Breiman L, Friedman J, Olshen R, Stone C. Classification and regression trees. Wadsworth Int Group, 1984, 37(15): 237-251.

[11]

Brooks JR, Jiang L, Ozçelik R. Compatible stem volume and taper equations for Brutian pine, Cedar of Lebanon, and Cilicica fir in Turkey. For Ecol Manag, 2008, 256: 147-151.

[12]

Čermák J, Kučera J, Bauerle WL, Phillips N, Hinckley TM. Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees. Tree Physiol, 2007, 27: 181-198.

[13]

Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 2005, 437: 529-533.

[14]

Cleveland CC, Townsend AR, Taylor P, Alvarez-Clare S, Bustamante MMC, Chuyong G, Dobrowski SZ, Grierson P, Harms KE, Houlton BZ, Marklein A, Parton W, Porder S, Reed SC, Sierra CA, Silver WL, Tanner EVJ, Wieder WR. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecol Lett, 2011, 14: 939-947.

[15]

Cocozza C, Palombo C, Tognetti R, La Porta N, Anichini M, Giovannelli A, Emiliani G. Monitoring intra-annual dynamics of wood formation with microcores and dendrometers in Picea abies at two different altitudes. Tree Physiol, 2016, 36: 832-846.

[16]

Cuny HE, Rathgeber CB, Lebourgeois F, Fortin M, Fournier M. Life strategies in intra-annual dynamics of wood formation: example of three conifer species in a temperate forest in north-east France. Tree Physiol, 2012, 32: 612-625.

[17]

Deslauriers A, Morin H, Urbinati C, Carrer M. Daily weather response of balsam fir [Abies balsamea (L.) Mill.] stem radius increment from dendrometer analysis in the boreal forests of Quebec (Canada). Trees, 2003, 17: 477-484.

[18]

Deslauriers A, Anfodillo T, Rossi S, Carraro V. Using simple causal modeling to understand how water and temperature affect daily stem radial variation in trees. Tree Physiol, 2007, 27: 1125-1136.

[19]

Deslauriers A, Rossi S, Anfodillo T. Dendrometer and intra-annual tree growth: what kind of information can be inferred?. Dendrochronologia, 2007, 25: 113-124.

[20]

Downes G, Beadle C, Worledge D. Daily stem growth patterns in irrigated Eucalyptus globulus and E. nitens in relation to climate. Trees, 1999, 14: 102-111.

[21]

Ducci F, Fusaro E, Lucci S, Ricciotti L (2007) Strategies for finalizing Conifers experimental tests to the production of improved reproductive materials. In: Proceedings of the international workshop MEDPINE3 “Conservation, regeneration and restoration of mediterranean pines and their ecosystems” (Valenzano, BA, 2005) Options Médit., Serie A, 2007, vol 75, pp 99–104

[22]

Duchesne L, Houle D, D’Orangeville L. Influence of climate on seasonal patterns of stem increment of balsam fir in a boreal forest of Québec, Canada. Agric For Meteorol, 2012, 162: 108-114.

[23]

Güney A, Kerr D, Sökücü A, Zimmermann R, Küppers M. Cambial activity and xylogenesis in stems of Cedrus libani A. Rich at different altitudes. Bot Stud, 2015, 56: 20.

[24]

Güney A, Küppers M, Rathgeber C, Şahin M, Zimmermann R. Intra-annual stem growth dynamics of Lebanon Cedar along climatic gradients. Trees, 2017, 31: 587-606.

[25]

Herzog KM, Häsler R, Thum R. Diurnal changes in the radius of a subalpine Norway spruce stem: their relation to the sap flow and their use to estimate transpiration. Trees, 1995, 10: 94-101.

[26]

Hofhansl F, Schnecker J, Singer G, Wanek W. New insights into mechanisms driving carbon allocation in tropical forests. New Phytol, 2015, 205: 137-146.

[27]

Kantarcı MD. Dibek (Kumluca) ve Çamkuyusu (Elmalı) Sedir (Cedrus libani A. Richard) Ormanlarında Ekolojik araştırmalar. İstanbul Üniversitesi Orman Fakültesi Dergisi A, 1985, 35: 19-36.

[28]

Köcher P, Horna V, Leuschner C. Environmental control of daily stem growth patterns in five temperate broad-leaved tree species. Tree Physiol, 2012, 32: 1021-1032.

[29]

Kölling C, Knoke T, Schall P, Ammer C. Überlegungen zum Risiko des Fichtenanbaus in Deutschland vor dem Hintergrund des Klimawandels. Forstarchiv, 2009, 80: 42-54.

[30]

Koo K-A, Patten BC, Creed IF. Picea rubens growth at high versus low elevations in the Great Smoky Mountains National Park: evaluation by systems modeling. Can J For Res, 2011, 41: 945-962.

[31]

McKenney DW, Pedlar JH. Spatial models of site index based on climate and soil properties for two boreal tree species in Ontario, Canada. For Ecol Manag, 2003, 175: 497-507.

[32]

McKenzie D, Hessl AE, Peterson DL. Recent growth of conifer species of western North America: assessing spatial patterns of radial growth trends. Can J For Res, 2001, 31: 526-538.

[33]

Messinger J, Güney A, Zimmermann R, Ganser B, Bachmann M, Remmele S, Aas G. Cedrus libani: a promising tree species for Central European forestry facing climate change?. Eur J For Res, 2015, 134: 1005-1017.

[34]

Michelot A, Simard S, Rathgeber C, Dufrene E, Damesin C. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree Physiol, 2012, 32: 1033-1045.

[35]

Milad M, Schaich H, Bürgi M, Konold W. Climate change and nature conservation in Central European forests: a review of consequences, concepts and challenges. For Ecol Manag, 2011, 261: 829-843.

[36]

Oberhuber W, Gruber A, Kofler W, Swidrak I. Radial stem growth in response to microclimate and soil moisture in a drought-prone mixed coniferous forest at an inner Alpine site. Eur J For Res, 2014, 133: 467-479.

[37]

Oladi R, Elzami E, Pourtahmasi K, Bräuning A. Weather factors controlling growth of Oriental beech are on the turn over the growing season. Eur J For Res, 2017, 136: 345-356.

[38]

Özkan K. Sınıflandırma ve regresyon ağacı tekniği (SRAT) ile ekolojik verinin modellenmesi. SDÜ Orman Fakültesi Dergisi, 2012, 13: 1-4.

[39]

Özkan K. Using the non-parametric classifier CART to model Lebanon Cedar (Cedrus libani A. Rich) distribution in a Mountain Mediterranean Forest District. Pol J Environ Stud, 2013, 22(2): 495-501.

[40]

Özkan K, Gulsoy S, Aerts R, Muys B. Site properties for Crimean juniper (Juniperus excelsa) in semi-natural forests of south western Anatolia, Turkey. J Environ Biol, 2010, 31: 97-100.

[41]

Pantin F, Simonneau T, Muller B. Coming of leaf age: control of growth by hydraulics and metabolics during leaf ontogeny. New Phytol, 2012, 196: 349-366.

[42]

Plomion C, Leprovost G, Stokes A. Wood formation in trees. Plant Physiol, 2001, 127: 1513-1523.

[43]

Rathgeber CBK, Longuetaud F, Mothe F, Cuny H, Le Moguédec G. Phenology of wood formation: data processing, analysis and visualisation using R (package CAVIAR). Dendrochronologia, 2011, 29: 139-149.

[44]

Schuster R, Oberhuber W. Drought sensitivity of three co-occurring conifers within a dry inner Alpine environment. Trees, 2013, 27: 61-69.

[45]

Schweingruber FH. Tree rings and environment: dendroecology, 1996, Bern: Paul Haupt Publishers 609

[46]

Senitza E (1989) Waldbauliche Grundlagen der Libanonzeder (Cedrus libani A. Rich) im Westtaurus/Türkei. Dissertation (in German). VWGO Publisher, Vienna, Austria, p 225

[47]

Sevim M. Lübnan Sedirinin (Cedrus libani) Türkiye’deki tabii yayılış ve ekolojik şartları. İstanbul Üniversitesi Orman Fakültesi Dergisi, 1955, 2(2): 19-46. (in Turkish)

[48]

Steppe K, Sterck F, Deslauriers A. Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends Plant Sci, 2015, 20: 335-343.

[49]

Stocker TF. Climate change 2013: the physical science basis. Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change, 2014, Cambridge: Cambridge University Press 1535

[50]

Thomas PA. Trees: their natural history, 2014, Cambridge: Cambridge University Press 286

[51]

Touchan R, Xoplaki E, Funhauser G, Luterbacher J, Hughes MK, Erkan N, Akkemik Ü, Stephan J. Reconstructions of spring/summer precipitation for the Eastern Mediterranean from tree-ring widths and its connection to large-scale atmospheric circulation. Clim Dyn, 2005, 25: 75-98.

[52]

Trouvé R, Bontemps JD, Collet C, Seynave I, Lebourgeois F. Radial growth resilience of sessile oak after drought is affected by site water status, stand density, and social status. Trees, 2017, 31: 517-529.

[53]

Urrutia-Jalabert R, Rossi S, Deslauriers A, Malhi Y, Lara A. Environmental correlates of stem radius change in the endangered Fitzroya cupressoides forests of southern Chile. Agric For Meteorol, 2015, 200: 209-221.

[54]

Verbyla DL. Classification trees: a new discrimination tool. Can J For Res, 1987, 17: 1150-1152.

[55]

Vieira J, Rossi S, Campelo F, Freitas H, Nabais C. Seasonal and daily cycles of stem radial variation of Pinus pinaster in a drought-prone environment. Agric For Meteorol, 2013, 180: 173-181.

[56]

Wang Z, Yang B, Deslauriers A, Bräuning A. Intra-annual stem radial increment response of Qilian juniper to temperature and precipitation along an altitudinal gradient in northwestern China. Trees, 2015, 29: 25-34.

[57]

Wimmer R. Wood anatomical features in tree-rings as indicators of environmental change. Dendrochronologia, 2002, 20: 21-36.

[58]

Wold S, Esbensen K, Geladi P. Principal component analysis. Chemometr Intell Lab Syst, 1987, 2: 37-52.

[59]

Woodruff D, Meinzer F, Lachenbruch B, Johnson D. Coordination of leaf structure and gas exchange along a height gradient in a tall conifer. Tree Physiol, 2009, 29: 261-272.

[60]

Xu M, Watanachaturaporn P, Varshney PK, Arora MK. Decision tree regression for soft classification of remote sensing data. Remote Sens Environ, 2005, 97: 322-336.

[61]

Zweifel R, Häsler R. Link between diurnal stem radius changes and tree water relations. Tree Physiol, 2001, 21: 869-877.

[62]

Zweifel R, Zimmermann L, Newbery D. Modeling tree water deficit from microclimate: an approach to quantifying drought stress. Tree Physiol, 2005, 25: 147-156.

[63]

Zweifel R, Zimmermann L, Zeugin F, Newbery DM. Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. J Exp Bot, 2006, 57: 1445-1459.

AI Summary AI Mindmap
PDF

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/