Decline and dieback of cork oak (Quercus suber L.) forests in the Mediterranean basin: a case study of Kroumirie, Northwest Tunisia

Issam Touhami , E. Chirino , H. Aouinti , A. El Khorchani , M. T. Elaieb , A. Khaldi , Z. Nasr

Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (5) : 1461 -1477.

PDF
Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (5) : 1461 -1477. DOI: 10.1007/s11676-019-00974-1
Review Article

Decline and dieback of cork oak (Quercus suber L.) forests in the Mediterranean basin: a case study of Kroumirie, Northwest Tunisia

Author information +
History +
PDF

Abstract

Assessing the vulnerability of forest ecosystems in the climate change context is a challenging task as the mechanisms that determine this vulnerability cannot be directly observed. Based on the ecological interrelationships between forests and climate, the present review focused on providing current information about vulnerability assessments of cork oak (Quercus suber L.) forests in the Mediterranean basin, especially, in the Kroumirie region (northwest Tunisia), currently under historic extreme drought conditions. From comparing recent findings in this region, we synthesized data on cork oak decline and mortality collected during the historic drought years 1988–1995 period. Climate change impacts cork forest decline, with special interest shown in elevated temperatures and drought; cork oak forest regeneration, and the adaptation of the Kroumirie forest to climate change, are reviewed herein. The studied region has been influenced largely by frequent prolonged drought periods, especially from 1988 to 1995. Droughts were found to consistently have a more detrimental impact on the growth and mortality rates of cork oak populations. Cork oak mortality was recorded for up to 63,622 trees. In the future, more research studies and observational data will be needed, which could represent an important key to understand ecosystem processes, and to facilitate the development of better models that project climate change impacts and vulnerability. The study is useful for researchers and forestry decision makers to develop the appropriate strategies to restore and protect ecosystems, and to help anticipate potential future droughts and climate change.

Keywords

Climate change / Drought effect / Forest decline / Tree mortality / Mediterranean forest

Cite this article

Download citation ▾
Issam Touhami, E. Chirino, H. Aouinti, A. El Khorchani, M. T. Elaieb, A. Khaldi, Z. Nasr. Decline and dieback of cork oak (Quercus suber L.) forests in the Mediterranean basin: a case study of Kroumirie, Northwest Tunisia. Journal of Forestry Research, 2019, 31(5): 1461-1477 DOI:10.1007/s11676-019-00974-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams HD, Collins AD, Briggs SP, Vennetier M, Dickman LT, Sevanto SA, Garcia-Forner N, Powers HH, Mcdowell NG. Experimental drought and heat can delay phenological development and reduce foliar and shoot growth in semiarid trees. Glob Chang Biol, 2015, 21: 4210-4220.

[2]

Ainsworth EA, Long SP. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol, 2005, 165: 351-371.

[3]

Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg (Ted) EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage, 2010, 259: 660-684.

[4]

Allen CD, Breshears DD, McDowell NG. On underestimation of global vulnerability to tree mortality and forest dieoff from hotter drought in the Anthropocene. Ecosphere, 2015, 6: 1-55.

[5]

Aloui A (2007) Analyse et diagnostic de l‘état actuel de la subéraie tunisienne et proposition d‘une stratégie de développement durable (étude stratégique pour le développement durable de la subéraie tunisienne), p 60

[6]

Amthor JS. Direct effect of elevated CO2 on nocturnal in situ leaf respiration in nine temperate deciduous tree species is small. Tree Physiol, 2000, 20(2): 139-144.

[7]

Apple ME, Lucash MS, Olszyk DM, Tingey DT. Morphogenesis of Douglas-fir buds is altered at elevated temperature but not at elevated CO2. Environ Exp Bot, 1998, 40(2): 159-172.

[8]

Bakri M, Abourouh M. Dépérissement du chêne-liège au Maroc: état des connaissances et perspectives. Bull OILB Srop, 1995, 18: 50-55.

[9]

Barbero M, Loisel R, Quézel P. Biogeography, ecology and history of Mediterranean Quercus ilex ecosystems. Vegetatio, 1992, 99–100: 19-34.

[10]

Battaglia M. Effects of seed dormancy and emergence time on the survival and early growth of Eucalyptus delegatensis and E. amygdalina. Aust J Bot, 1996, 44: 123-137.

[11]

Ben Jamâa M. La mauvaise exploitation du liège: un facteur redoutable pouvant affecter la surface génératrice du liège et le dépérissement du chêne-liège. Integrated protection in oak forests. IOBC-WPRS Bull., 2014, 101: 75-79.

[12]

Ben Jamâa M, Hasnaoui B (1996) Le dépérissement du chêne-liège (Quercus suber L.) en Tunisie. Ann. Rech. For. Maroc Numéro spé, pp 1–10

[13]

Ben Jamâa M, Sghaier T, Mnara S, Nouri M, Sellemi H. Le dépérissement du chêne-liège dans la subéraie de Béllif (Tunisie): caractérisation et évaluation de son impact sur l’accroissement du liège. Integr Prot Oak For IOBC/wprs Bull., 2005, 28: 17-24.

[14]

Ben Jamâa M, Chaar H, Brinsi M, Nouri M (2006) Impact des variations climatiques sur le dépérissement du chêne-liège (Quercus suber L.) dans la région de Aïn Draham. Les Ann. l’INRGREF Numéro spé, pp 138–153

[15]

Ben Zyane M (1998) La subéraie marocaine, produit économique et social à développer. Les Ann. l’INRGREF Numéro Spé, pp 12–21

[16]

Bentouati A. La situation du cèdre de l’Atlas dans les Aurès (Algérie). Forêt méditerranéenne, 2008, 29: 203-208.

[17]

Bigler C, Bräker OU, Bugmann H, Dobbertin M, Rigling A. Drought as an inciting mortality factor in scots pine stands of the Valais, Switzerland. Ecosystems, 2006, 9: 330-343.

[18]

Bouchaour Djabeur S. Diagnostic sanitaire de quelques subéraies de l’ouest Algérien, 2001, Algeria: Faculté des Sciences, Université de Tlemcen 85 92

[19]

Bouhraoua RT, Villemant C, Khelil MA, Bouchaour S. Situation sanitaire de quelques subéraies de l’Ouest algérien: impact des xylophages. IOBC-wprs Bull, 2002, 25: 85-92.

[20]

Boussaidi N. Parcours en forêt et risque de dégradation des potentialités pastorales dans la IVème série forestière de Mekna (Tabarka-Tunisie), 2005, Tunisia: INAT 14 15

[21]

Boussaidi N (2012) Impacts de l‘action anthropique sur la subéraie tunisienne: essai de projection dans le futur d‘un écosystème (cas de la subéraie de Kroumirie- nord-ouest de la Tunisie). Ph.D Thesis. Institut National Agronomique de Tunisie (INAT), p 220

[22]

Breshears DD, Myers OB, Meyer CW, Barnes FJ, Zou CB, Allen CD, McDowell NG, Pockman WT. Tree die-off in response to global change-type drought: mortality insights from a decade of plant water potential measurements. Front Ecol Environ, 2009, 7: 185-189.

[23]

Brinsi M. Contribution à l’étude du dépérissement du chêne-liège dans la subéraie de Aïn Draham: impact des conditions climatiques, 2004, Tunisia: INAT 45

[24]

Camarero JJ, Sangüesa-Barreda G, Vergarechea M. Prior height, growth, and wood anatomy differently predispose to drought-induced dieback in two Mediterranean oak species. Ann For Sci, 2016, 73: 341-351.

[25]

Campos P, Daly-Hassen H, Oviedo JL, Ovando P, Chebil A. Accounting for single and aggregated forest incomes: application to public cork oak forests in Jerez (Spain) and Iteimia (Tunisia). Ecol Econ, 2008, 65: 76-86.

[26]

Catry FX, Moreira F, Cardillo E, Pausas JG. Post-fire management and restoration of southern European forests, 2012, Dordrecht: Springer 195 222

[27]

Ceia RS, Ramos JA. Birds as predators of cork and holm oak pests. Agrofor Syst, 2016, 90: 159-176.

[28]

Chenchouni H, Abdelkrim SB, Athmane B (2008) The deterioration of the Atlas Cedar (Cedrus atlantica) in Algeria. In: International conference “adaptation of forests and forest management to changing climate with emphasis on forest health: a review of science, policies, and practices”. FAO/IUFRO, Sweden, pp 25–28

[29]

Chmura DJ, Anderson PD, Howe GT, Harrington CA, Halofsky JE, Peterson DL, Shaw DC, St Brad, Clair J. Forest responses to climate change in the northwestern United States: ecophysiological foundations for adaptive management. For Ecol Manage, 2011, 261(7): 1121-1142.

[30]

Colangelo M, Camarero JJ, Battipaglia G, Borghetti M, De Micco V, Gentilesca T, Ripullone F. A multi-proxy assessment of dieback causes in a Mediterranean oak species. Tree Physiol, 2017, 37: 617-631.

[31]

Costa A, Pereira H, Oliveira A. A dendroclimatological approach to diameter growth in adult cork-oak trees under production. Trees Struct Funct, 2001, 15: 438-443.

[32]

Costa A, Pereira H, Oliveira A. Influence of climate on the seasonality of radial growth of cork oak during a cork production cycle. Ann For Sci, 2002, 59: 429-437.

[33]

Costa A, Pereira H, Madeira M. Analysis of spatial patterns of oak decline in cork oak woodlands in Mediterranean conditions. Ann For Sci, 2010, 67: 204.

[34]

Delatour C. Quelques observations de phytopathologie forestière faites en Tunisie. I. R. T. Var. Sci., 1969, 2: 11.

[35]

DGF. Deuxième inventaire forestier et pastoral national. Résultats sur l’échelon de Jendouba, 2005, Tunis: DGF 129

[36]

Di Filippo A, Alessandrini A, Biondi F, Blasi S, Portoghesi L, Piovesan G. Climate change and oak growth decline: dendroecology and stand productivity of a Turkey oak (Quercus cerris L.) old stored coppice in Central Italy. Ann For Sci, 2010, 67: 706.

[37]

El Hamrouni A (1992) La végétation forestière, pré-forestière et pré-steppique de la Tunisie. Université Aix—Marseille, Marseille

[38]

El Khorchani A, Gadbin-Henry C, Bouzid S, Khaldi A. Impact de la sécheresse sur la croissance de trois espèces forestières en Tunisie (Pinus halepensis Mill., Pinus pinaster Sol. et Pinus pinea L.). Secheresse, 2007, 18: 113-121.

[39]

Emberger L (1952) Sur le quotient pluviothermique. C.R.Acad. Sci. Paris ZM, pp 2508–2510

[40]

Ennajah A, Guibal F, Hanchi B, Mouillot F, Garchi S. Croissance radiale du chêne-liège et climat en Tunisie. Secheresse, 2010, 21: 34-41.

[41]

Ennajah A, Azri W, Sai Kachout S, Taibi K, Mouillot F, Ourcival JM. Drought effects on buds growth and dynamic of Tunisian cork oak populations. Int J Agron Plant Prod, 2013, 4(8): 1742-1752.

[42]

FAO (2010a) Global forest resources assessment 2010, FAO forestry paper

[43]

FAO (2010b) Forests and climate change working paper 9: forests and climate change in the near east region. FAO, Rome

[44]

Fatichi S, Leuzinger S, Körner C. Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. New Phytol, 2014, 201(4): 1086-1095.

[45]

Ferreira F (2000) The cork oak condition in Portugal. In: Recent advances on oak health in Europe. Selected papers from a conference held in Warsaw, Poland, 22–24 November 1999. Warsaw, Poland, pp 121–130

[46]

Flexas J, Bota J, Galmés J, Medrano H, Ribas-Carbó M. Keeping a positive carbon balance under adverse conditions:responses of photosynthesis and respiration to water stress. Physiol Plant, 2006, 127: 343-352.

[47]

Franceschini A, Corda P, Maddau L, Secchi C, Ruiu PA. Manifestations de dépérissement du chêne liège en Sardaigne (Italy). IOBC-WPRS Bull, 1999, 22: 1-3.

[48]

García de la Serrana R, Vilagrosa A, Alloza JA. Pine mortality in southeast Spain after an extreme dry and warm year: interactions among drought stress, carbohydrates and bark beetle attack. Trees-Struct Funct, 2015, 29: 1791-1804.

[49]

Gardiner ES, Hodges JD. Physiological, morphological and growth responses to rhizosphere hypoxia by seedlings of North American bottomland oaks. Ann Sci For, 1996, 53: 303-316.

[50]

Gentilesca T, Camarero JJ, Colangelo M, Nolè A, Ripullone F. Drought-induced oak decline in the western mediterranean region: an overview on current evidences, mechanisms and management options to improve forest resilience. IForest, 2017, 10: 796-806.

[51]

Gnacadja L, Lesch AK. Running dry? Climate change in drylands and how to cope with it, 2009, Munchen: Oekom.

[52]

Gotarredona C (1992) Estado fitosanitário de las massas forestales de Quercineas en los espacios naturales de Andalucia. In: Actas Simposio Mediterraneo Sobre Regeneration Del Monte Alcornocal. Merida, Évora, Sevilla, pp 191–195

[53]

Graf A, Basri E, Bakry M (1992) Cork oak decline in Morocco. In: Proceedings of an international congress “recent advances in studies on oak decline”. Selva di Fasano (Brindisi), Italy

[54]

Grant OM, Tronina Ł, Ramalho JC, Kurz Besson C, Lobo-Do-Vale R, Santos Pereira J, Jones HG, Chaves MM. The impact of drought on leaf physiology of Quercus suber L. trees: comparison of an extreme drought event with chronic rainfall reduction. J Exp Bot, 2010, 61: 4361-4371.

[55]

GTZ (2007) Adaptation to CC: development of a national strategy for agriculture, ecosystems and water resources in Tunisia. Tunis

[56]

Hasnaoui B (1992) Chênaies du Nord de la Tunisie: écologie et régénération. Université de Provence.Aix Marseille, pp 2–4

[57]

Hasnaoui B (1998) Régénération naturelle du chêne-liège: difficultés et propositions des solutions. Les Ann. l’INRGREF Numéro spé, pp 126–147

[58]

Hasnaoui F (2010) Variabilité du dépérissement du chêne-liège et du chêne zeen en Kroumirie (Nord-Ouest de la Tunisie). Les Ann. l’INRGREF Numéro Spé, pp 155–169

[59]

Helgerson OT. Heat damage in tree seedlings and its prevention. New For, 1989, 3(4): 333-358.

[60]

Hergarten M, Liagre L, Froede-Thierfelder B (2013) Forests and climate change adaptation: a twofold approach. MENA region

[61]

Hsiao TC, Xu L. Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. J Exp Bot, 2000, 51: 1595-1616.

[62]

Innes J, Joyce LA, Kellomäki S, Louman B, Ogden A, Thompson I, Parrotta J, Ayres M, Ong C, Santoso H, Sohngen B, Wreford A (2009) Management for adaptation. In: Seppälä R, Buck A, Katila P (eds) Adaptation of forests and people to climate change: a global assessment report. Prepared by the global forest expert panel on adaptation of forests to climate change. IUFRO World Series vol 22, p 224

[63]

INS (2007) Annuaire Statistique de la Tunisie 2007. Tunis

[64]

IPCC. Climate change 2013: the physical science basis, contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, 2013, Cambridge: Cambridge University Press.

[65]

Jablonski LM, Wang X, Curtis PS. Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species. New Phytol, 2002, 156: 9-26.

[66]

Jazzar L, Rzigui T, Ben Fradj R, Touhami I, Nasr Z. Leaf gas exchange variation under summer drought in Tunisian cork oak from geographically central and marginal populations. Euro-Mediterr J Environ Integr., 2019, 4: 17.

[67]

Khaine I, Woo SY. An overview of interrelationship between climate change and forests. Forest Sci. Technol, 2015, 11: 11-18.

[68]

Khaldi A (2001) Bilan actualisé de la régénération du chêne-liège en Kroumirie-Mogods (Tunisie). In: International meeting on silviculture of cork oak (Quercus Suber L.) and Cedar (Cedrus Atlantica). Rabat, Maroc, pp 133–135

[69]

Klein T, Zeppel MJB, Anderegg WRL, Bloemen J, De Kauwe MG, Hudson P, Ruehr NK, Powell TL, von Arx G, Nardini A. Xylem embolism refilling and resilience against drought-induced mortality in woody plants: processes and trade-offs. Ecol Res, 2018, 33: 839-855.

[70]

Körner C, Basler D. Phenology under global warming. Science, 2010, 327(5972): 1461-1462.

[71]

Körner C, Sarris D, Christodoulakis D. Long-term increase in climatic dryness in the East-Mediterranean as evidenced for the island of Samos. Reg Environ Chang, 2005, 5: 27-36.

[72]

Kreuzwieser J, Papadopoulou E, Rennenberg H. Interaction of flooding with carbon metabolism of forest trees. Plant Biol, 2004, 6(3): 299-306.

[73]

Kurepin LV, Stangl ZR, Ivanov AG, Bui V, Mema M, Hüner NPA, Öquist G, Way D, Hurry V. Contrasting acclimation abilities of two dominant boreal conifers to elevated CO2 and temperature. Plant, Cell Environ, 2018, 41: 1331-1345.

[74]

Lee SY, Woo SY, Nasr Z, Zineddine M, Khaldi A, Rejeb MN. Can net photosynthesis and water relations provide a clue on the forest decline of Quercus suber in North Tunisia? African. J Biotechnol, 2011, 10: 1637-1639.

[75]

Lloret F, Escudero A, Iriondo JM, Martínez-Vilalta J, Valladares F. Extreme climatic events and vegetation: the role of stabilizing processes. Glob Chang Biol, 2012, 18(3): 797-805.

[76]

Luciano P, Prota R. Insect pests in Sardinia cork oak forests. IOBC WPRS Bull, 1995, 18: 1-7.

[77]

Mannai Y, Ezzine O, Nouira S, Ben Jamâa M. First report of Erannis defoliaria on Quercus sp. in North West of Tunisia, Tunis. J Plant Prot, 2015, 10: 75-78.

[78]

Martínez-Vilalta J, Piñol J. Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula. For Ecol Manage, 2002, 161: 247-256.

[79]

McCarthy HR, Oren R, Johnsen KH, Gallet-Budynek A, Pritchard DG, Cook CW, Ladeau SL, Jackson RB, Finzi AC. Re-assessment of plant carbon dynamics at the Duke free-air CO2 enrichment site: interactions of atmospheric [CO2] with nitrogen and water availability over stand development. New Phytol, 2010, 185: 514-528.

[80]

McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?. New Phytol, 2008, 178(4): 719-739.

[81]

Mirault J (1996) État de santé des forêts méditerranéennes françaises: cas du chêne-liège, du Pin d’alep et du cèdre de l’Atlas. In: Colloque Sur Le dépérissement des forêts: ésumés des communications. Rabat, Maroc

[82]

Mok HF, Arndt SK, Nitschke CR. Modelling the potential impact of climate variability and change on species regeneration potential in the temperate forests of South Eastern Australia. Glob Chang Biol, 2012, 18: 1053-1072.

[83]

Nageleisen LM. Les dépérissements d’essences feuillues en France. Rev For Française, 1993 XLV 6 605

[84]

Nasr Z, Woo SY, Zineddine M, Khaldi A, Rejeb MN. Sap flow estimates of Quercus suber according to climatic conditions in north Tunisia. Afr J Agric Res, 2011, 6: 4705-4710.

[85]

Niinemets Ü. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 2001, 82: 453-469.

[86]

Niinemets Ü, Cescatti A, Rodeghiero M, Tosens T. Leaf internal diffusion conductance limits photosynthesis more strongly in older leaves of Mediterranean evergreen broad-leaved species. Plant, Cell Environ, 2005, 28: 1552-1566.

[87]

Nilsen ET, Orcutt DM. The physiology of plants under stress, 1996, New York: Wiley 704

[88]

Norby RJ, Luo YQ. Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol, 2004, 162: 281-293.

[89]

Norby RJ, Ofle K, Curtis PS, Badeck FW, Huth A, Hurtt GC, Kohyama T, Penuelas J. Aboveground growth and competition in forest gap models: an analysis for studies of climatic change. Clim Change, 2001, 51: 415-447.

[90]

Nsibi R (2005) Sénescence et rajeunissement des Subéraies de Tabarka-Aïn Draham avec approches écologiques et biotechnologiques. Faculté des Sciences de Tunis

[91]

O’Brien MJ, Engelbrecht BMJ, Joswig J, Pereyra G, Schuldt B, Jansen S, Kattge J, Landhäusser SM, Levick SR, Preisler Y, Väänänen P, Macinnis-Ng C. A synthesis of tree functional traits related to drought-induced mortality in forests across climatic zones. J Appl Ecol, 2017, 54(6): 1669-1686.

[92]

Ogaya R, Peñuelas J, Asensio D, Llusià J. Chlorophyll fluorescence responses to temperature and water availability in two co-dominant Mediterranean shrub and tree species in a long-term field experiment simulating climate change. Environ Exp Bot, 2011, 73: 89-93.

[93]

Olszyk D, Wise C, VanEss E, Apple M, Tingey D. Phenology and growth of shoots, needles, and buds of Douglas-fir seedlings with elevated CO2 and (or) temperature. Can J Bot, 1998, 76: 1991-2001.

[94]

ONAGRI (2004) Les forêts et la prévention des incendies de l’été. Tunis

[95]

Parada T, Lusk CH. Patterns of tree seedling mortality in a temperate-mediterranean transition zone forest in Chile, Gayana. Botánica, 2011, 68: 236-243.

[96]

Pérez-Sierra A, López-García C, León M, García-Jiménez J, Abad-Campos P, Jung T. Previously unrecorded low-temperature Phytophthora species associated with Quercus decline in a Mediterranean forest in eastern Spain. For Pathol, 2013, 43: 331-339.

[97]

Pilcher JR, Gray B. The relationships between oak tree growth and climate in Britain. J Ecol, 1982, 70: 297.

[98]

Qaderi MM, Martel AB, Dixon SL. Environmental factors influence plant vascular system and water regulation. Plants, 2019, 8: 65.

[99]

Ruiu PA, Sechi C, Linaldeddu BT, Franceschini A. Analyse de l’incidence du dépérissement sur les chênes-lièges non démasclés et de production. IOBC-WPRS Bull, 2005, 28: 59-63.

[100]

Rzigui T, Jazzar L, Ben Baaziz K, Fkiri S, Nasr Z. Drought tolerance in cork oak is associated with low leaf stomatal and hydraulic conductances. iForest, 2018, 11: 728-733.

[101]

Sanchez G, Garcia P (2007) The status of cork and holm oak stands and forests Spain. In: DGRF, FAO, WWF (eds) The vitality of cork and holm oak stands and forests-current situation, state of knowledge and actions to take. Rep. Conf. Meet. Evora, Portugal

[102]

Saxe H, Ellsworth DS, Heath J. Tree and forest functioning in an enriched CO2 atmosphere. New Phytol, 1998, 139: 395-436.

[103]

Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Wild J, Ascoli D, Petr M, Honkaniemi J, Lexer MJ, Trotsiuk V, Mairota P, Svoboda M, Fabrika M, Nagel TA, Reyer CPO. Forest disturbances under climate change. Nat Clim Chang, 2017, 7(6): 395-402.

[104]

Selmi M. Différenciation des sols et fonctionnement des écosystèmes sur grés numidiens de Kroumirie (Tunisie), 1985, Tunisa: Ecologie de la subéraie zenaie, Université de Nancy 200

[105]

Selmi K (2006) Utilisation des données et résultats de l’inventaire forestier national pour la gestion des forêts de chêne-liège en Tunisie. Tunis, pp 5–8

[106]

Siwecki R, Ufnalski K. Review of oak stand decline with special reference to the role of drought in Poland. Eur J For Pathol, 1998, 28: 99-112.

[107]

Smith TM, Smith RL (2009) Chapter 29, global climat change. In: Elements of ecology. Pearson Benjamin Cummings, San Francisco, USA, pp 622–646

[108]

Sousa EMR (1996) Contribution à l’étude de la biologie de population de Platypus cylindrus (Coleoptera, Platypodidae) dans les peuplements de chêne-liège au Portugal. Thèse de Doctorat, Université Claude Bernard, Lyon

[109]

Stiti B, Sebei H, Khaldi A. Growth regeneration and analysis of cork oak (Quercus suber) trees in the Ain Snoussi forest, Tunisia. IOBC/WPRS Bull, 2005, 28(8): 237-244.

[110]

Stoneman GL. Ecology and physiology of establishment of eucalypt seedlings from seed: A review. Aust For, 1994, 57: 11-30.

[111]

Tingey DT, Phillips DL, Johnson MG. Elevated CO2 and conifer roots: effects on growth, life span and turnover. New Phytol, 2000, 147: 87-103.

[112]

Tlili N, Ennajah A, Loukehaich R, Ammari Y. Leaf mass per area and nitrogen content in cork oak (Quercus suber L.) under a range of climatic stress (drought and temperature stress). J Biod EnviroSci, 2014, 5: 343-351.

[113]

Toledo M, Poorter L, Peña-Claros M, Alarcón A, Balcázar J, Leaño C, Licona JC, Llanque O, Vroomans V, Zuidema P, Bongers F. Climate is a stronger driver of tree and forest growth rates than soil and disturbance. J Ecol, 2011, 99: 254-264.

[114]

Touchan R, Meko DM, Aloui A. Precipitation reconstruction for Northwestern Tunisia from tree rings. J Arid Environ, 2008, 72: 1887-1896.

[115]

Trigo RM, Palutikof JP. Precipitation scenarios over Iberia: a comparison between direct GCM output and different downscaling techniques. J Clim, 2001, 14: 4422-4446.

[116]

Tsopelas P, Angelopoulos A, Economou A, Soulioti N. Mistletoe (Viscum album) in the fir forest of Mount Parnis, Greece. For Ecol Manage, 2004, 202: 59-65.

[117]

Vayreda J, Martinez-Vilalta J, Gracia M, Retana J. Recent climate changes interact with stand structure and management to determine changes in tree carbon stocks in Spanish forests. Glob Chang Biol, 2012, 18: 1028-1041.

[118]

Vennetier M, Gadbin-Henry C, Guibal F, Liang E, Taahbet A, Vilà B (2007) Impact of climate change on pine forest productivity and on the shift of a bioclimatic limit in a Mediterranean area. Options Méditerranéennes, Série A, CIHEAM/IAMB, Bari, Italy 8, pp 189–197

[119]

Vose JM, Peterson DL, Patel-Weynand T (2012) Effects of climatic variability and change on forest ecosystems: a comprehensive science synthesis for the US forest sector. For Serv Gen Tech. Rep. PNW-GTR-87, pp 1–265

[120]

Wang T, Hamann A, Yanchuk A, O’neill GA, Aitken SN. Use of response functions in selecting lodgepole pine populations for future climates. Glob Chang Biol, 2006, 12: 2404-2416.

[121]

White PS, Pickett STA (1985) Natural disturbance and patch dynamics. In: The ecology of natural disturbance and patch dynamics. Academic Press, pp 3–13

[122]

Williams AP, Allen CD, Macalady AK, Griffin D, Woodhouse CA, Meko DM, Swetnam TW, Rauscher SA, Seager R, Grissino-Mayer HD, Dean JS, Cook ER, Gangodagamage C, Cai M, Mcdowell NG. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Chang, 2013, 3: 292-297.

[123]

WMO (1992) International meteorological vocabulary, 2nd ed, World Meteorological Organization Technical Publication No. 182. World Meteorological Organization

[124]

Zribi L, Mouillot F, Guibal F, Rejeb S, Rejeb MN, Gharbi F. Deep soil conditions make mediterranean Cork Oak stem growth vulnerable to autumnal rainfall decline in Tunisia. Forests, 2016, 7: 245.

[125]

Zribi L, Chaar H, Khaldi A, Hanchi B, Mouillot F, Gharbi F. Estimate of biomass and carbon pools in disturbed and undisturbed oak forests in Tunisia. For Syst, 2016, 25: 408-415.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/