Ecoregional variations of aboveground biomass and stand structure in evergreen broadleaved forests

Tran Van Do , Mamoru Yamamoto , Osamu Kozan , Vo Dai Hai , Phung Dinh Trung , Nguyen Toan Thang , Lai Thanh Hai , Vu Thanh Nam , Trieu Thai Hung , Hoang Van Thang , Tran Duc Manh , Cao Chi Khiem , Vu Tien Lam , Nguyen Quang Hung , Tran Hoang Quy , Pham Quang Tuyen , Trinh Ngoc Bon , Nguyen Thi Thu Phuong , Ninh Viet Khuong , Nguyen Van Tuan , Dang Thi Hai Ha , Tran Hai Long , Dang Van Thuyet , Dang Thinh Trieu , Nguyen Van Thinh , Tran Anh Hai , Duong Quang Trung , Nguyen Van Bich , Dinh Hai Dang , Pham Tien Dung , Nguyen Huy Hoang , Le Thi Hanh , Phan Minh Quang , Nguyen Thi Thuy Huong , Hoang Thanh Son , Nguyen Thanh Son , Nguyen Thi Van Anh , Nguyen Thi Hoai Anh , Pham Dinh Sam , Hoang Thi Nhung , Hoang Van Thanh , Nguyen Huu Thinh , Tran Hong Van , Ho Trung Luong , Bui Kieu Hung

Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (5) : 1713 -1722.

PDF
Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (5) : 1713 -1722. DOI: 10.1007/s11676-019-00969-y
Original Paper

Ecoregional variations of aboveground biomass and stand structure in evergreen broadleaved forests

Author information +
History +
PDF

Abstract

Biotic and abiotic factors control aboveground biomass (AGB) and the structure of forest ecosystems. This study analyses the variation of AGB and stand structure of evergreen broadleaved forests among six ecoregions of Vietnam. A data set of 173 1-ha plots from 52 locations in undisturbed old-growth forests was developed. The results indicate that basal area and AGB are closely correlated with annual precipitation, but not with annual temperature, evaporation or hours of sunshine. Basal area and AGB are positively correlated with trees > 30 cm DBH. Most areas surveyed (52.6%) in these old-growth forests had AGB of 100–200 Mg ha−1; 5.2% had AGB of 400–500 Mg ha−1, and 0.6% had AGB of > 800 Mg ha−1. Seventy percent of the areas surveyed had stand densities of 300–600 ind. ha−1, and 64% had basal areas of 20–40 m2 ha−1. Precipitation is an important factor influencing the AGB of old-growth, evergreen broadleaved forests in Vietnam. Disturbances causing the loss of large-diameter trees (e.g., > 100 cm DBH) affects AGB but may not seriously affect stand density.

Keywords

Aboveground biomass / Carbon storage / Climatic variables / Ecoregion / Edaphic variables / Old-growth forest

Cite this article

Download citation ▾
Tran Van Do, Mamoru Yamamoto, Osamu Kozan, Vo Dai Hai, Phung Dinh Trung, Nguyen Toan Thang, Lai Thanh Hai, Vu Thanh Nam, Trieu Thai Hung, Hoang Van Thang, Tran Duc Manh, Cao Chi Khiem, Vu Tien Lam, Nguyen Quang Hung, Tran Hoang Quy, Pham Quang Tuyen, Trinh Ngoc Bon, Nguyen Thi Thu Phuong, Ninh Viet Khuong, Nguyen Van Tuan, Dang Thi Hai Ha, Tran Hai Long, Dang Van Thuyet, Dang Thinh Trieu, Nguyen Van Thinh, Tran Anh Hai, Duong Quang Trung, Nguyen Van Bich, Dinh Hai Dang, Pham Tien Dung, Nguyen Huy Hoang, Le Thi Hanh, Phan Minh Quang, Nguyen Thi Thuy Huong, Hoang Thanh Son, Nguyen Thanh Son, Nguyen Thi Van Anh, Nguyen Thi Hoai Anh, Pham Dinh Sam, Hoang Thi Nhung, Hoang Van Thanh, Nguyen Huu Thinh, Tran Hong Van, Ho Trung Luong, Bui Kieu Hung. Ecoregional variations of aboveground biomass and stand structure in evergreen broadleaved forests. Journal of Forestry Research, 2019, 31(5): 1713-1722 DOI:10.1007/s11676-019-00969-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Asner GP, Hughes RF, Varga TA, Knapp DE, Kennedy-Bowdoin T. Environmental and biotic controls over aboveground biomass throughout a tropical rain forest. Ecosystems, 2009, 12: 261-278.

[2]

Bailey RG. Delineation of ecosystem region. Environ Manag, 1983, 7: 365-373.

[3]

Bao H, Kralicek K, Poudel KP, Vu TP, Phung VK, Nguyen DH, Temesgen H. Allometric equations for estimating tree aboveground biomass in evergreen broadleaf forests of Viet Nam. For Ecol Manag, 2016, 382: 193-205.

[4]

Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. Forestry Paper 134. FAO, Rome

[5]

Brown S, Iverson LR, Prasad A, Liu D. Geographical distributions of carbon in biomass and soils of tropical Asian forests. Geocarto Int, 1993, 4: 45-59.

[6]

Brown IF, Martinelli LA, Thomas WW, Moreira MZ, Ferreira CA, Victoria RA. Uncertainty in the biomass of Amazonian forests: an example from Rondonia, Brazil. For Ecol Manag, 1995, 75: 175-189.

[7]

Chapin FS, Matson PA, Mooney HA. Principles of terrestrial ecosystem ecology, 2002, New York: Springer

[8]

Chave J, Condit R, Muller-Landau HC, Thomas SC, Ashton PS, Bunyavejchewin S, Co LL, Dattaraja HS, Davies SJ, Esufali S, Ewango CEN, Feeley KJ, Foster RB, Gunatilleke N, Gunatilleke S, Hall P, Hart TB, Hernandez C, Hubbell SP, Itoh A, Kiratiprayoon S, Lafrankie JV, Loo de Lao S, Makana JR, Noor MNS, Kassim AR, Samper C, Sukumar R, Suresh HS, Tan S, Thompson J, Tongco MDC, Valencia R, Vallejo M, Villa G, Yamakura T, Zimmerman JK, Losos EC. Assessing evidence for a pervasive alteration in tropical tree communities. PLoS Biol, 2008, 6: e45.

[9]

Dixon RK, Solomon AM, Brown S, Houghton RA, Trexler MC, Wisniewski J. Carbon pools and flux of global forest ecosystems. Science, 1994, 263: 185-190.

[10]

Djomo AN, Knohl A, Gravenhorst G. Estimations of total ecosystem carbon pools distribution and carbon biomass current annual increment of a moist tropical forest. For Ecol Manag, 2011, 261: 1448-1459.

[11]

Fahey TJ, Knapp AK. Principles and standards for measuring primary production, 2007, New York: Oxford University Press

[12]

Gentry AH. Patterns of neotropical plant species diversity. Evol Biol, 1982, 15: 1-84.

[13]

Gibbon A, Silman MR, Malhi Y, Fisher JB, Meir P, Zimmermann M, Dargie GC, Farfan WR, Garcia KC. Ecosystem carbon storage across the grassland-forest transition in the high Andes of Manu National Park, Peru. Ecosystems, 2010, 13: 1097-1111.

[14]

Gibbs HK, Brown S, Niles JO, Foley JA. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett, 2007, 2: 1-13.

[15]

Holdridge LR. Ecologia Basada en Zonas de Vida, 1979, San Jose: Editorial IICA.

[16]

Houghton RA, Hall F, Goetz SJ. Importance of biomass in the global carbon cycle. J Geophys Res, 2009, 114: G00E03.

[17]

Kindermann GE, McCallum I, Fritz S, Obersteiner M. A global forest growing stock, biomass and carbon map based on FAO statistics. Silva Fennica, 2008, 42: 387-396.

[18]

Lasco RD, Guillermo IQ, Cruz RVO, Bantayan NC, Pulhin FB. Carbon stocks assessment of a secondary forest in Mount Makiling Forest Reserve, Philippines. J Trop For Sci, 2004, 16: 35-45.

[19]

Laurance WF, Laurance SG, Ferreira LV, Rankin-de-Merona JM, Gascon C, Lovejoy TE. Biomass collapse in Amazonian forest fragments. Science, 1997, 278: 1117-1118.

[20]

Laurance WF, Fearnside PM, Laurance SG, Delamonica P, Lovejoy TE, Rankin de Merona JM, Chambers JQ, Gascon C. Relationship between soils and Amazon forest biomass: a landscape-scale study. For Ecol Manag, 1999, 118: 127-138.

[21]

Le S (1996) Research on forest structure and proposal new selecting cutting system in Kon Ha Nung-Central Highlands. Ph.D. dissertation, Vietnam Forestry University, Hanoi

[22]

Lee S, Lee J, Kim S, Roh Y, Salim KA, Lee WK, Son W. Forest structure and carbon dynamics of an intact lowland mixed dipterocarp forest in Brunei Darussalam. J For Res, 2018, 29: 199-203.

[23]

Lewis SL, Phillips OL, Baker TR, Lloyd J, Malhi Y, Almeida S, Higuchi N, Laurance WF, Neill DA, Silva JNM, Terborgh J, Torres Lezama A, Vasquez Martınez R, Brown S, Chave J, Kuebler C, Nunez Vargas P, Vinceti B. Concerted changes in tropical forest structure and dynamics: evidence from 50 South American long-term plots. Phil Trans R Soc B, 2004, 359: 421-436.

[24]

Lewis SL, Lopez-Gonzalez G, Sonke B, Affum-Baffoe K, Baker TR, Ojo LO, Phillips OL, Reitsma JM, White L, Comiskey JA, Djuikouo MNK, Ewango CEN, Feldpausch TR, Hamilton AC, Gloor M, Hart T, Hladik A, Lloyd J, Lovett JC, Makana JR, Malhi Y, Mbago FM, Ndangalasi HJ, Peacock J, Peh KSH, Sheil D, Sunderland T, Swaine MD, Taplin J, Taylor D, Thomas SC, Votere R, Woll H. Increasing carbon storage in intact African tropical forests. Nature, 2009, 457: 1003-1006.

[25]

Lewis SL, Sonke B, Sunderland T, Begne SK, Lopez-Gonzalez G, van der Heijden GMF, Phillips OL, Affum-Baffoe K, Baker TR, Banin L, Bastin J, Beeckman H, Boeckx P, Bogaert J, Canniere CD, Chezeaux E, Clark CJ, Collins M, DjagbleteyG Noe M, Djuikouo K, Droissart V, Doucet J, Ewango CEN, Fauset S, Feldpausch TR, Foli EG, Gillet GF, Hamilton AC, Harris DJ, Hart TB, Haulleville TD, Hladik A, Hufkens K, Huygens D, Jeanmart P, Jeffery KJ, Kearsley E, Leal ME, Lloyd J, Lovett JC, Makana JR, Malhi Y, Marshall AR, Ojo L, Peh KSH, Pickavance G, Poulsen JR, Reitsma JM, Sheil D, Simo M, Steppe K, Taedoumg HE, Talbot J, Taplin JRD, Taylor D, Thomas SC, Toirambe B, Verbeeck H, Vleminckx J, White LJT, Willcock S, Woell H, Zemagho L. Above-ground biomass and structure of 260 African tropical forests. Phil Trans R Soc B, 2013, 368: 20120295.

[26]

Loarie SR, Asner GP, Field CB. Boosted carbon emissions from Amazon deforestation. Geophys Res Lett, 2009, 36: L14810.

[27]

Lugo AE, Scatena FN. Background and catastrophic tree mortality in tropical moist, wet, and rain forests. Biotropica, 1996, 28: 585-599.

[28]

Malhi Y, Wood D, Baker TR, Wright J, Phillips OL, Cochrane T, Meir P, Chave J, Almeida S, Arroyo L, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Monteagudo A, Neill DA, Vargas PN, Pitman NCA, Quesada CA, Salomao R, Silva JNM, Lezama AT, Terborgh J, Martinez RV, Vinceti B. The regional variation of aboveground live biomass in old-growth Amazonian forests. Glob Change Biol, 2006, 12: 1107-1138.

[29]

Malhi Y, Aragao LEOC, Metcalfe DB, Paiva R, Quesada CA, Almeida S, Anderson L, Brando P, Chambers JQ, Da Costa ACL, Hutyra LR, Oliveira P, Patino S, Pyle EH, Robertson AL, Teixeira LM. Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Glob Change Biol, 2009, 15: 1255-1274.

[30]

MARD (2014) Annual statistical data for agriculture and rural development. Ministry of Agriculture & Rural Development, Hanoi, Vietnam. http://fsiu.mard.gov.vn/data/khituong.htm. Accessed on 15 Nov 2017

[31]

Miles L, Kapos V. Reducing greenhouse gas emissions from deforestation and forest degradation: global land-use implications. Science, 2008, 320: 1454-1455.

[32]

Miller SD, Goulden ML, Hutyra LR, Keller M, Saleska SR, Wofsy SC, Figueira AMS, da Rocha HR, de Camargo PB. Reduced impact logging minimally alters tropical rainforest carbon and energy exchange. Proc Natl Acad Sci, 2011, 108: 19431-19435.

[33]

Muller-Landau HC, Condit RS, Harms KE, Marks CO, Thomas SC, Bunyavejchewin S, Chuyong G, Co L, Davies S, Foster R, Gunatilleke S, Gunatilleke N, Hart T, Hubbell SP, Itoh A, Kassim AR, Kenfack D, LaFrankie JV, Lagunzad D, Lee HS, Losos E, Makana JR, Ohkubo T, Samper C, Sukumar R, Sun IF, Supardi MNN, Tan S, Thomas D, Thompson J, Valencia RMIGV, Yamakura T, Zimmerman JK, Dattaraja HS, Esufali S, Hall P, He F, Hernandez C, Kiratiprayoon S, Suresh HS, Wills C, Ashton P. Comparing tropical forest tree size distributions with the predictions of metabolic ecology and equilibrium models. Ecol Lett, 2006, 9: 589-602.

[34]

Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D. A large and persistent carbon sink in the world’s forests. Science, 2011, 333: 988-993.

[35]

Pandian E, Parthasarathy N. Decadal (2003–2013) changes in liana diversity, abundance and aboveground biomass in four inland tropical dry evergreen forest sites of peninsular India. J For Res, 2016, 27: 133-146.

[36]

Paoli GD, Curran LM, Slik JWF. Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo. Oecologia, 2008, 155: 287-299.

[37]

Pearson TRH, Brown S, Casarim FM. Carbon emissions from tropical forest degradation caused by logging. Environ Res Lett, 2014, 9: 034017.

[38]

Phillips OL, Malhi Y, Higuchi N, Laurance WF, Nuenez PV, Vasquez RM, Laurance SG, Ferreira LV, Stern M, Brown S, Grace J. Changes in the carbon balance of tropical forests: evidence from long-term plots. Science, 1998, 282: 439-442.

[39]

Pires JM, Prance GT. Lovejoy TE. The vegetation types of the Brazilian Amazon. Prance GT, 1985, New York: Pergamon Press 109 145

[40]

Quesada CA, Phillips OL, Schwarz M, Czimczik CI, Baker TR, Patino S, Fyllas NM, Hodnett MG, Herrera R, Almeida S, Alvarez Davila E, Arneth A, Arroyo L, Chao KJ, Dezzeo N, Erwin T, di Fiore A, Higuchi N, Honorio Coronado E, Jimenez EM, Killeen T, Lezama AT, Lloyd G, Lopez-Gonzalez G, Luizao FJ, Malhi Y, Monteagudo A, Neill DA, Nunez Vargas P, Paiva R, Peacock J, Penuela MC, Pena Cruz A, Pitman N, Priante Filho N, Prieto A, Ramırez H, Rudas A, Salomao R, Santos AJB, Schmerler J, Silva N, Silveira M, Vasquez R, Vieira I, Terborgh J, Lloyd J. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences, 2012, 9: 2203-2246.

[41]

Reilly MJ, Spies TA. Regional variation in stand structure and development in forests of Oregon, Washington, and inland Northern California. Ecosphere, 2015, 6: 192.

[42]

Saatchi SS, Houghton RA, dos Santos Alvala RC, Soares JV, Yu Y. Distribution of aboveground live biomass in the Amazon basin. Glob Change Biol, 2007, 13: 816-837.

[43]

Saldarriaga JG, West DC, Tharp ML, Uhl C. Longterm chronosequence of forest succession in the upper Rio Negro of Colombia and Venezuela. J Ecol, 1988, 76: 938-958.

[44]

Saner P, Loh YY, Ong RC, Hector A. Carbon stocks and fluxes in tropical lowland dipterocarp rainforests in Sabah, Malaysian Borneo. PloS One, 2012, 7: e29642.

[45]

Schimel DS. Terrestrial ecosystems and the carbon cycle. Glob Change Biol, 1995, 1: 77-91.

[46]

Sierra CA, Del Valle IJ, Orrego SA, Moreno FH, Harmon MA, Zapata M, Colorado GJ, Herrera MA, Lara W, Restrepo DE, Berrouet LM, Loaiza LM, Benjumea JF. Total carbon stocks in a tropical forest landscape of the Porce region, Columbia. For Ecol Manag, 2007, 243: 299-309.

[47]

Slik JWF, Aiba SI, Brearley FQ, Cannon CH, Forshed O, Kitayama K, Nagamasu H, Nilus R, Payne J, Paoli G, Poulsen AD, Raes N, Sheil D, Sidiyasa K, Suzuki E, Van Valkenburg JLCH. Environmental correlates of tree biomass, basal area, wood specific gravity and stem density gradients in Borneo’s tropical forests. Glob Ecol Biogeo, 2010, 19: 50-60.

[48]

Slik JW, Paoli G, McGuire K, Amaral I, BarrosoJ Bastian M, Blanc L, Bongers F, Boundja P, Clark C, Collins M, Dauby G, Ding Y, Doucet JL, Eler E, Ferreira L, Forshed O, Fredriksson G, Gillet JF, Harris D, Leal M, Laumonier Y, Malhi Y, Mansor A, Martin E, Miyamoto K, Araujo-Murakami A, Nagamasu H, Nilus R, Nurtjahya E, Oliveira A, Onrizal O, Parada-Gutierrez A, Permana A, Poorter L, Poulsen J, Ramirez-Angulo H, Reitsma J, Rovero F, Rozak A, Sheil D, Silva-Espejo J, Silveira M, Spironelo W, ter Steege H, Stevart T, Navarro-Aguilar GE, Sunderland T, Suzuki E, Tang J, Theilade I, van der Heijden G, van Valkenburg T, Tran VD, Vilanova E, Vos V, Wich S, Wöll H, Yoneda T, Zang R, Zhang MG, Zweifel N. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob Ecol Biogeo, 2013, 22: 1261-1271.

[49]

Tashi S, Keitel C, Singh B, Adams M. Allometric equations for biomass and carbon stocks of forests along an altitudinal gradient in the eastern Himalayas. Forestry, 2017, 90: 445-454.

[50]

Tran VD, Akira O, Nguyen TT. Recovery process of a mountain forest after shifting cultivation in Northwestern Vietnam. For Ecol Manag, 2010, 259: 1650-1659.

[51]

Tran VD, Akira O, Nguyen TT, Nguyen BV, Bui TH, Cam QK, Le TT, Diep XT. Population changes of early successional forest species after shifting cultivation in Northwestern Vietnam. New For, 2011, 41: 247-262.

[52]

Tran VD, Ngo VC, Tamotsu S, Nguyen TB, Osamu K, Nguyen TT, Ralph M. Post-logging regeneration and growth of commercially valuable tree species in evergreen broadleaf forest, Vietnam. J Trop For Sci, 2016, 28: 426-435.

[53]

Tran VD, Phung DT, Mamoru Y, Osamu K, Nguyen TT, Dang VT, Hoang VT, Nguyen TTP, Ninh VK, Ngo VC. Aboveground biomass increment and stand dynamics in tropical evergreen broadleaved forest. J Sustain For, 2017, 37: 1-14.

[54]

Tran VD, Tamotsu S, Vo DH, Nguyen TT, Nguyen TB, Nguyen HS, Dang VT, Bui TD, Hoang VT, Trieu TH, Tran VC, Osamu K, Le VT, Ngo VC. Aboveground phytomass and tree species diversity along altitudinal gradient in Central Highland, Vietnam. Trop Ecol, 2017, 58: 95-104.

[55]

Tuomisto H, Ruokolainen K, Kalliola R, Linna A, Danjoy W, Rodriguez Z. Dissecting Amazonian biodiversity. Science, 1995, 269: 63-66.

[56]

Urquiza-Haas T, Dolman PM, Peres CA. Regional scale variation in forest structure and biomass in the Yucatan Peninsula, Mexico: effects of forest disturbance. For Ecol Manag, 2007, 247: 80-90.

[57]

Vo DH, Tran VD, Dang TT, Tamotsu S, Osamu K. Carbon stocks in tropical evergreen broadleaf forests in Central Highland, Vietnam. Int Forest Rev, 2015, 17: 20-29.

[58]

Westfall JA, McRoberts RE. An assessment of uncertainty in volume estimates for stands reconstructed from tree stump information. Forestry, 2017, 90: 404-412.

[59]

Zheng J, Wei X, Liu Y, Liu G, Wang W, Liu W. Review of regional carbon counting methods for the Chinese major ecological engineering programs. J For Res, 2016, 27(4): 727-738.

AI Summary AI Mindmap
PDF

86

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/