Evaluation of natural forest regeneration as a part of land restoration in the Khentii massif, Mongolia

David Juřička , Antonín Kusbach , Jana Pařílková , Jakub Houška , Pavlína Ambrožová , Václav Pecina , Zdena Rosická , Martin Brtnický , Jindřich Kynický

Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (5) : 1773 -1786.

PDF
Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (5) : 1773 -1786. DOI: 10.1007/s11676-019-00962-5
Original Paper

Evaluation of natural forest regeneration as a part of land restoration in the Khentii massif, Mongolia

Author information +
History +
PDF

Abstract

Forest stands in the semi-arid environment of northern Mongolia have an essential role in controlling ongoing desertification in the surrounding landscape. Over the last decade, the total forest area has decreased dramatically. The aim of this study was to evaluate the potential of natural regeneration as an essential element for ensuring sustainability of these forests. Based on field measurements from 120 plots in six sites, our assessment tool revealed five qualitative categories of forest regeneration, allowing us to assess impacts of both grazing and environmental conditions on the regeneration process. Grazing is a crucial factor and adversely affects regeneration. For sites with relatively low grazing intensity, low soil moisture levels represent the main reason for reduced regeneration. The approach to classification proposed in this study allows for the identification and interpretation of stand conditions where natural regeneration has failed. This study provides an important foundation to inform decision- making related to land protection and restoration actions. Our findings could be used in comparative studies and, importantly, may aid further mapping of Mongolian forests.

Keywords

Mongolia / Natural forest regeneration / Seedlings / Larix sibirica / Land restoration / Desertification

Cite this article

Download citation ▾
David Juřička, Antonín Kusbach, Jana Pařílková, Jakub Houška, Pavlína Ambrožová, Václav Pecina, Zdena Rosická, Martin Brtnický, Jindřich Kynický. Evaluation of natural forest regeneration as a part of land restoration in the Khentii massif, Mongolia. Journal of Forestry Research, 2019, 31(5): 1773-1786 DOI:10.1007/s11676-019-00962-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Acker SA, Kertis JA, Pabst RJ. Tree regeneration, understory development, and biomass dynamics following wildfire in a mountain hemlock (Tsuga mertensiana) forest. For Ecol Manag, 2017, 384: 72-82.

[2]

Anenkhonov OA, Korolyuk AY, Sandanov DV, Liu H, Zverev AA, Guo D. Soil-moisture conditions indicated by field-layer plants help identify vulnerable forests in the forest-steppe of semi-arid Southern Siberia. Ecol Indic, 2015, 57: 196-207.

[3]

Asner GP, Elmore AJ, Olander LP, Martin RE, Harris T. Grazing systems, ecosystem responses, and global change. Annu Rev Environ Res, 2004, 29: 261-299.

[4]

Batkhuu N-O, Lee DK, Tsogtbaatar J. Forest and forestry research and education in Mongolia. J Sustain For, 2011, 30(6): 600-617.

[5]

Bellingham PJ, Richardson SJ, Mason NWH, Veltman CJ, Allen RB, Allen WJ, Barker RJ, Forsyth DM, Nicol S, Ramsey DSL. Introduced deer at low densities do not inhibit the regeneration of a dominant tree. For Ecol Manag, 2016, 364: 70-76.

[6]

Belsky AJ, Blumenthal DM. Effects of livestock grazing on stand dynamics and soils in upland forests of the interior west. Conserv Biol, 1997, 11(2): 315-327.

[7]

Bohannon J. The big thaw reaches Mongolia's Pristine North. Science, 2008, 319(5863): 567-568.

[8]

Bondarev A. Age distribution patterns in open boreal Dahurican larch forests of Central Siberia. For Ecol Manag, 1997, 93(3): 205-214.

[9]

Breiman L. Random forests. Mach Learn, 2001, 45(1): 5-32.

[10]

Callegaro L. Electrical impedance: principles, measurement, and applications, 2012, Boca Raton: Cambridge University Press 308

[11]

Child DR, Byington EK, Hansen HH. Baker FH, Jones RK. Goats in the mixed hardwoods in the southeastern United States. Multispecies grazing, 1992, Winrock International Institute for Agricultural Development: Morrilton 149 158

[12]

Dulamsuren Ch, Hauck M, Bader M, Osokhjhargal D, Oyungerel S, Nyambayar S, Runge M, Leuschner C. Water relations and photosynthetic performance in Larix sibirica growing in the forest-steppe ecotone of northern Mongolia. Tree Physiol, 2009, 29(1): 99-110.

[13]

Dulamsuren Ch, Hauck M, Leuschner C. Recent drought stress leads to growth reductions in Larix sibirica in the western Khentey. Mongolia. Glob Chang Biol, 2010, 16(11): 3024-3035.

[14]

Erdenesan E (2016) Livestock Statistics in Mongolia. https://www.fao.org/fileadmin/templates/ess/documents/apcas26/presentations/APCAS-166.3.5_-_Mongolia_-_Livestock_Statistics_in_Mongolia.pdf[accessed 22.1.2018].

[15]

Ermakov N, Cherosov M, Gogoleva P. Classification of ultracontinental boreal forests in central Yakutia. Folia Geobotanica, 2002, 37(4): 419-440.

[16]

FAO. Mongolia—global forest resources assessment 2015 – Country Report, 2015, Rome: Food and agriculture organization of the United Nations 97

[17]

Fleenor R (2016) Plant Guide for Fireweed (Chamerion angustifolium). https://plants.usda.gov/plantguide/pdf/pg_chan9.pdf [accessed 22.1.2018].

[18]

Genxu W, Shengnan L, Hongchang H, Yuanshou L. Water regime shifts in the active soil layer of the Qinghai-Tibet Plateau permafrost region, under different levels of vegetation. Geoderma, 2009, 149(3–4): 280-289.

[19]

Genxu W, Guangsheng L, Chunjie L. Effects of changes in alpine grassland vegetation cover on hillslope hydrological processes in a permafrost watershed. J Hydrol, 2012, 444–445: 22-33.

[20]

GIZ (2016) Forest atlas. www.forest-atlas.mn [accessed 14.9.2017].

[21]

Gravis GF, Zabolotnik SI, Sukhodrovsky VL, Gavrilova MK, Lisun AM. Geocryological conditions in the People’s Republic of Mongolia, 1974, Moscow: Nauka Publishing 200

[22]

Hair JFJ, Hult TGH, Ringle C, Sarstedt MA. Primer on partial least squares structural equation modeling (PLS-SEM), 2013, Thousand Oaks: SAGE Publications 307

[23]

Hédl R, Svátek M, Dančák M, Rodzay AW, Salleh AB, Kamariah AS. A new technique for inventory of permanent plots in tropical forests: a case study from lowland dipterocarp forest in Kuala Belalong, Brunei Darussalam. Blumea Biodiversity, Evol Biogeogr Plants, 2009, 54: 124-130.

[24]

Hilbig W, Knapp HD. Vegetationsmosaik und Florenelemente an der Wald-Steppen-Grenze im Chentej-Gebirge (Mongolei): a case study from lowland dipterocarp forest in Kuala Belalong, Brunei Darussalam. Flora, 1983, 174: 1-89.

[25]

James TM. Temperature sensitivity and recruitment dynamics of Siberian larch (Larix sibirica) and Siberian spruce (Picea obovata) in northern Mongolia’s boreal forest: a case study from lowland dipterocarp forest in Kuala Belalong, Brunei Darussalam. For Ecol Manag, 2011, 262: 629-636.

[26]

Juřička D, Sobotka M, Pangrác J, Brtnický M, Kynický J. Pařílková J, Procházka L. Possibilities of measuring with Z-Metr III in extreme natural conditions of permafrost areas in the north and north-west Mongolia. Eureka 2014, 2nd conference and working season within the frame of the international program EUREKA, 2014, Brno: Publisher VUTIUM 87 96

[27]

Juřička D, Muchová M, Elbl J, Pecina V, Kynický J, Brtnický M, Rosická Z. Construction of remains of small-scale mining activities as a possible innovative way how to prevent desertification. Int J Environ Sci Technol, 2016, 13(6): 1405-1418.

[28]

Juřička D, Novotná J, Houška J, Pařílková J, Hladký J, Pecina V, Cihlářová H, Burnog M, Elbl J, Rosická Z, Kynický J, Brtnický M. Large-scale permafrost degradation as a primary factor in Larix sibirica forest dieback in the Khentii massif, northern Mongolia. Journal of Forestry Research, 2018, 88: 1-12.

[29]

Kanoun O. Lecture notes on impedance spectroscopy: measurement, modelling and applications, 2011, Boca Raton: CRC Press 112

[30]

Kaya A, Fang HY. Identification of contaminated soils by dielectric constant and electrical conductivity. J. Envir. Engrg., 1997, 123: 169-177.

[31]

Kokelj SV, Riseborough D, Coutts R, Kanigan JCN. Permafrost and terrain conditions at northern drilling-mud sumps: impacts of vegetation and climate change and the management implications. Cold Reg Sci Technol, 2010, 64(1): 46-56.

[32]

Kooijman AM, Emmer IM, Fanta J, Sevink J. Natural regeneration potential of the degraded Krkonoše forests. Land Degrad Dev, 2000, 11(5): 459-473.

[33]

Liaw A, Wiener M. Classification and regression by RandomForest. The Newsletter of the R Project, 2002, 2–3: 18-22.

[34]

Lioubimtseva E, Cole R, Adams JM, Kapustin G. Impacts of climate and land-cover changes in arid lands of Central Asia. J Arid Environ, 2005, 62(2005): 285-308.

[35]

Lkhagvadorj D, Hauck M, Dulamsuren C, Tsogtbaatar J. Pastoral nomadism in the forest-steppe of the Mongolian Altai under a changing economy and a warming climate. J Arid Environ, 2013, 88: 82-89.

[36]

Ludwig R, Dorjsuren Ch, Baatarbileg N. Manual for multipurpose national forest inventory field assessment, 2014, Ulaanbaatar: Internationale Zusammenarbeit (GIZ) GmbH 43

[37]

Maasri A, Gelhaus J. The new era of the livestock production in Mongolia: Consequences on streams of the Great Lakes Depression. Sci Total Environ, 2011, 409(22): 4841-4846.

[38]

Marin A. Riders under storms: Contributions of nomadic herders’ observations to analysing climate change in Mongolia. Global Environmental Change, 2010, 20(1): 162-176.

[39]

McCune B, Mefford MJ. 2011. PC-ORD. Multivariate Analysis of Ecological Data, Version 6.0 for Windows 2011. MjM Software, Gleneden Beach, 337 p.

[40]

Mitchel FJG, Kirby KJ. The impact of large herbivores on the conservation of semi-natural woods in the British uplands. Forestry, 1990, 63(4): 333-353.

[41]

Mongolian Forest Law. 2013. Mongolian Law on Forest. A revised version, Government Bulletin No. 22, 2012. Ulaanbaatar: Ministry of Environment and Green Development of Mongolia, p 66.

[42]

Mongolian Statistics Information Service (2017) Number of livestock. https://www.1212.mn/statHtml/statHtml.do?orgId=976&tblId=DT_NSO_1001_021V1&conn_path=I2&language=en [accessed 22.1.2018].

[43]

Mookhor K, Dulamsuren C, Dorjburegdaa L, Leuschner Ch, Hauck M. Contrasting responses of seedling and sapling densities to livestock density in the Mongolian forest-steppe. Plant Ecol, 2013, 214(1): 1391-1403.

[44]

Mühlenberg M, Appelfelder J, Hoffmann H, Ayush E, Wilson K. Structure of the montane taiga forests of West Khentii, Northern Mongolia. Journal of Forest Science, 2012, 58(2): 45-56.

[45]

Oswald BP, Neuenschwander LF. Microsite Variability and Safe Site Description for Western Larch Germination and Establishment. Bull Torrey Bot Club, 1993, 120(2): 148-156.

[46]

Oyuntuya S, Dorj B, Shurentsetseg B, Bayarjargal E (2015) Agrometeorological information for the adaptation to climate change. In: Badmaev NB, Khutakova CB (eds), Soils of Steppe and Forest Steppe Ecosystems of Inner Asia and Problems of Their Sustainable Utilization, 1st edn. Buryat State Academy of Agriculture named after V.R. Philipov, Ulan-Ude, pp 135–140. doi: 10.1016/S0168–1923(00)00110–6

[47]

Pařílková J, Radkovský K. Z-meter III – User’s Manual, 2011, Brno: Print Copy General Ltd 25

[48]

Pejchal M, Šimek P. Evaluation of potential of woody species vegetation components in objects of landscape architecture. Acta Universitatis Agriculturae et Silviculturae Mendelianae. Brunensis, 2012, 60: 199-204.

[49]

Reimoser F, Armstrong H, Suchant R. Measuring forest damage of ungulates: what should be considered?. For Ecol Manag, 1999, 120(1–3): 47-58.

[50]

Sankey TT, Montagne C, Graumlich L, Lawrence R, Nielsen J. Lower forest-grassland ecotones and 20th Century livestock herbivory effects in northern Mongolia. For Ecol Manage, 2006, 233(1): 36-44.

[51]

Sato T, Kimura F, Kitoh A. Projection of global warming onto regional precipitation over Mongolia using a regional climate model. J Hydrol, 2007, 333(1): 144-154.

[52]

Sharkhuu N. 2003. Recent changes in the permafrost of Mongolia. In: Philips M, Springman SM, Arenson LU (eds), Proceedings of the 8th international conference on permafrost, 21–25 July 2003. Zurich: CEC press, pp 1029–1034.

[53]

Sternberg T, Thomas D, Middleton N. Drought dynamics on the Mongolian steppe, 1970–2006. Int J Climatol, 2011, 31: 1823-1830.

[54]

Thomas DSG, Middleton NJ. Desertification: exploding the myth, 1994, New Jersey: Wiley-Blackwell 208

[55]

Tsogtbaatar J. Deforestation and reforestation needs in Mongolia. For Ecol Manag, 2004, 201: 57-63.

[56]

Tutubalina OV, Rees WG. Vegetation degradation in a permafrost region as seen from space: Noril'sk (1961–1999). Cold Reg Sci Technol, 2001, 32(1–2): 191-203.

[57]

Vallentine JF. Grazing management, 2001 2 San Diego: Academic Press 659

[58]

Yang X, Ci L, Zhang KJ. Artificial woodland degradation in semi-arid agro-pastoral transitional area: conceptual model and status assessment. J For Res, 2006, 17(3): 193-196.

[59]

Ykhanbai H (2010) Mongolia forestry outlook study. Asia-pacific forestry sector outlook study II: working paper no. APFSOS II/WP/2009/21. https://www.fao.org/docrep/014/am616e/am616e00.pdf [accessed 22.1.2018].

[60]

Yuan XZR, Song C, Wang H, Zhang J. Electrochemical impedance spectroscopy in PEM fuel cells, 2010, London: Springer 420

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/