Aboveground biomass allometric equations and distribution of carbon stocks of the African oak (Afzelia africana Sm.) in Burkina Faso

Larba Hubert Balima , Blandine Marie Ivette Nacoulma , Philippe Bayen , Kangbéni Dimobe , François N’Guessan Kouamé , Adjima Thiombiano

Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (5) : 1699 -1711.

PDF
Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (5) : 1699 -1711. DOI: 10.1007/s11676-019-00955-4
Original Paper

Aboveground biomass allometric equations and distribution of carbon stocks of the African oak (Afzelia africana Sm.) in Burkina Faso

Author information +
History +
PDF

Abstract

The significant role of tropical forest ecosystems in the global carbon budget has increased the need for accurate estimates of tropical forest biomass. The lack of large-scale biomass allometric equations hampers the understanding of the spatial distribution of tree biomass and carbon stocks and their influencing factors in West Africa. This study aimed to develop allometric equations to estimate aboveground biomass of African oak (Afzelia africana Sm.) in Burkina Faso and to analyze factors affecting the variability of tree biomass and carbon storage. Sixty individual trees were destructively sampled in four protected areas along two climatic zones. In each climatic zone, log–log models were tested and fitted to each aboveground biomass component and to the total aboveground biomass. Carbon content in tree aboveground components was evaluated using the ash method. All validated equations showed good fit and performance with high explained variance. Allometric equations differed between the Sudano-sahelian zone and the Sudanian zone, except for leaf biomass equations. Both biomass allocation and carbon content varied significantly between tree components but not between climatic zones. Carbon content in tree components followed the patterns of biomass allocation with branches accounting for the highest proportion. In the two climatic zones, carbon contents were 50.18–52.62% for leaves, 54.78–54.94% for stems and 54.96–55.99% for branches. Dry biomass ranged from 509.05 to 765.56 kg tree−1 at site level and from 620.21 to 624.48 kg tree−1 along climatic zones. Carbon content varied from 53.90% in the Sudano-sahelian zone to 54.39% in the Sudanian zone. This study indicated that climate does not influence aboveground biomass production and carbon sequestration of Afzelia africana along the Sudano-sahelian and the Sudanian climatic zones of Burkina Faso. Future studies on climate–growth relationships should contribute to better understanding climate effects on biomass production and carbon storage.

Keywords

African mahogany / Biomass allometry / Carbon storage / Climatic gradient / West Africa

Cite this article

Download citation ▾
Larba Hubert Balima, Blandine Marie Ivette Nacoulma, Philippe Bayen, Kangbéni Dimobe, François N’Guessan Kouamé, Adjima Thiombiano. Aboveground biomass allometric equations and distribution of carbon stocks of the African oak (Afzelia africana Sm.) in Burkina Faso. Journal of Forestry Research, 2019, 31(5): 1699-1711 DOI:10.1007/s11676-019-00955-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allen SE, Grimshaw HM, Rowland AP. Moore PD, Chapman SB. Chemical analysis. Methods of plant ecology, 1986, Oxford: Blackwell 285 344

[2]

Balima LH, Nacoulma BMI, Ekué MRM, Kouamé NF, Thiombiano A. Use patterns, use values and management of Afzelia africana Sm. in Burkina Faso: implication for domestication and sustainable conservation. J Ethnobiol Ethnomed, 2018, 14(23): 1-14.

[3]

Basuki TM, van Laake PE, Skidmore AK, Hussin YA. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. For Ecol Manag, 2009, 257: 1684-1694.

[4]

Bayen P, Bognounou F, Lykke AM, Ouédraogo M, Thiombiano A. The use of biomass production and allometric models to estimate carbon sequestration of Jatropha curcas L. plantations in western Burkina Faso. Environ Dev Sustain, 2015, 17(1): 1-16.

[5]

Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure J-P, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Ecosyst Ecol, 2005, 145: 78-99.

[6]

Chave J, Rejou Mechain M, Burquez A, Chidumayo E, Colgan MS, Delitti WBC, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Martinez-Yrizar A, Mugasha WA, Muller-Landau HC, Mencuccini M, Nelson BW, Ngomanda A, Nogueira EM, Ortiz-Malavassi E, Pélissier R, Ploton P, Ryan CM, Saldarriaga JG, Vieilledent G. Improved allometric models to estimate the above ground biomass of tropical trees. Glob Change Biol, 2014, 20: 3177-3190.

[7]

Dimobe K, Goetze D, Ouédraogo A, Mensah S, Akpagana K, Porembski S, Thiombiano A. Aboveground biomass allometric equations and carbon content of the shea butter tree (Vitellaria paradoxa CF Gaertn., Sapotaceae) components in Sudanian savannas (West Africa). Agrofor Syst, 2018, 71(3): 1-14.

[8]

Dimobe K, Mensah S, Goetze D, Ouédraogo A, Kuyah S, Porembski S, Thiombiano A. Aboveground biomass partitioning and additive models for Combretum glutinosum and Terminalia laxiflora in West Africa. Biomass Bioenergy, 2018, 115: 151-159.

[9]

Djomo AN, Ibrahima A, Saborowski J, Gravenhorst G. Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa. For Ecol Manag, 2010, 260: 1873-1885.

[10]

Djomo AN, Picard N, Fayolle A, Henry M, Ngomanda A, Ploton P, McLellan J, Saborowski J, Adamou I, Lejeune P. Tree allometry for estimation of carbon stocks in African tropical forests. Forestry, 2016, 89: 446-455.

[11]

Donkpegan ASL, Hardy OJ, Lejeune P, Oumorou M, Daïnou K, Doucet J-L. Un complexe d’espèces d’Afzelia des forêts africaines d’intérêt économique et écologique (synthèse bibliographique). Biotechnol Agron Soc Environ, 2014, 18(2): 233-246.

[12]

Fayolle A, Doucet JL, Gillet JF, Bourland N, Lejeune P. Tree allometry in Central Africa: testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks. For Ecol Manag, 2013, 305: 29-37.

[13]

Fonseca W, Alice FE, Rey-Benayas JM. Carbon accumulation in aboveground and belowground biomass and soil of different age native forest plantations in the humid tropical lowlands of Costa Rica. New For, 2011, 43(2): 197-211.

[14]

Fonton NH, Medjibé V, Djomo A, Kondaoulé J, Rossi V, Ngomanda A, Maïdou H. Analyzing accuracy of the power functions for modeling aboveground biomass prediction in Congo basin tropical forests. Open J For, 2017, 7: 388-402.

[15]

Gibbs HK, Brown S, Niles JO, Jonathan A, Foley JA. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett, 2007, 2: 1-13.

[16]

Henry M, Besnard A, Asante WA, Eshun J, Adu-Bredu SA, Valentini R, Bernoux M, Saint-André L. Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. For Ecol Manag, 2010, 260: 1375-1388.

[17]

Kuyah S, Dietz J, Muthuri C, Jamnadass R, Mwangi P, Coe R, Neufeldt H. Allometric equations for estimating biomass in agricultural landscapes: I. Aboveground biomass. Agr Ecosyst Environ, 2012, 158: 216-224.

[18]

Mbow C, Verstraete MM, Sambou B, Diaw AT, Neufeldt H. Allometric models for aboveground biomass in dry savanna trees of the Sudan and Sudan Guinean ecosystems of Southern Senegal. J For Res, 2013, 19: 340-347.

[19]

Mensah S, Veldtman R, du Toit B, Glèlè Kakaï R, Seifert T. Aboveground biomass and carbon in a South African mistbelt forest and the relationships with tree species diversity and forest structures. Forests, 2016, 79: 1-17.

[20]

Mensah S, Veldtman R, Seifert T. Allometric models for height and aboveground biomass of dominant tree species in South African Mistbelt forests. South For J For Sci, 2016, 79: 19-30.

[21]

Negi JDS, Manhas RK, Chauhan PS. Carbon allocation in different components of some tree species of India: a new approach for carbon estimation. Curr Sci, 2003, 85(11): 1528-1531.

[22]

Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Philips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D. A large and persistent carbon sink in the world’s forests. Science, 2011, 333(80): 988-993.

[23]

Paul KI, Roxburgh SH, Ritson P, Brooksbank K, England JR, Larmour JS, Raison RJ, Peck A, Wildy DT, Sudmeyer RA, Giles R, Carter J, Bennett R, Mendham DS, Huxtable D, Bartle JR. Testing allometric equations for prediction of above-ground biomass of mallee eucalypts in southern Australia. For Ecol Manag, 2013, 310: 1005-1015.

[24]

Picard N, Rutishauser E, Ploton P, Ngomanda A, Henry M. Should tree biomass allometry be restricted to power models?. For Ecol Manag, 2015, 353: 156-163.

[25]

Qasim M, Porembski S, Sattler D, Stein K, Thiombiano A, Lindner A. Vegetation structure and carbon stocks of two protected areas within the South-Sudanian Savannas of Burkina Faso. Environments, 2016, 3(25): 1-16.

[26]

Sawadogo L, Savadogo P, Tiveau D, Dayamba SD, Zida D, Nouvellet Y, Oden PC, Guinko S. Allometric prediction of above-ground biomass of eleven woody tree species in the Sudanian savanna-woodland of West Africa. J For Res, 2010, 21(4): 475-481.

[27]

Schippers P, Sterck F, Vlam M, Zuidema PA. Tree growth variation in the tropical forest: understanding effects of temperature, rainfall and CO2. Glob Change Biol, 2015, 21: 2749-2761.

[28]

Thiombiano A, Glèlè Kakaï R, Bayen P, Boussim IJ, Mahamane A. Méthodes et dispositifs d’inventaires forestiers en Afrique de l’Ouest: état des lieux et propositions pour une harmonisation. Methodes de collecte et d’analyse des données de terrain pour l’évaluation et le suivi de la végétation en Afrique, Annales des Sciences Agronomiques, 2016, 20: 15-31.

[29]

Traoré S, Djomo AN, N’guessan AK, Coulibaly B, Ahoba A, Gnahoua GM, N’guessan EK, Adou Yao CY, N’Dja JK, Guede NZ. Stand structure, allometric equations, biomass and carbon sequestration capacity of Acacia mangium Wild. (Mimosaceae) in Cote d’Ivoire. Open J For, 2018, 8: 42-60.

[30]

Vashum KT, Jayakumar S. Methods to estimate above-ground biomass and carbon stock in natural forests—a review. Ecosyst Ecogr, 2012, 2(116): 1-7.

[31]

Wani NR, Qaisar KN. Carbon percent in different components of tree species and soil organic carbon pool under these tree species in Kashmir Valley. Curr World Environ, 2014, 9(1): 174-181.

[32]

Xiang W, Zhou J, Ouyang S, Zhang S, Lei P, Li J, Deng X, Fang X, Forrester DI. Species-specific and general allometric equations for estimating tree biomass components of subtropical forests in southern China. Eur J For Res, 2016, 135: 963-979.

[33]

Yang J, Ji X, Deane DC, Wu L, Chen S. Spatiotemporal distribution and driving factors of forest biomass carbon storage in China: 1977–2013. Forests, 2017, 8(263): 1-14.

[34]

Zeng WS, Duo HR, Lei XD, Chen XY, Wang XJ, Pu Y, Zou WT. Individual tree biomass equations and growth models sensitive to climate variables for Larix spp. in China. Eur J For Res, 2017, 136: 233-249.

[35]

Zhang H, Song T, Wang K, Yang H, Yue Y, Zeng Z, Peng W, Zeng F. Influences of stand characteristics and environmental factors on forest biomass and root–shoot allocation in southwest China. Ecol Eng, 2016, 91: 7-15.

[36]

Zhao Y, Ding Y, Hou X, Li FY, Han W, Yun X. Effects of temperature and grazing on soil organic carbon storage in grasslands along the Eurasian steppe eastern transect. PLoS ONE, 2017, 12(10): 1-16.

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/