Identification of Arceuthobium globosum using unmanned aerial vehicle images in a high mountain forest of central Mexico

Luis A. León-Bañuelos , Angel R. Endara-Agramont , William Gómez-Demetrio , Carlos G. Martínez-García , E. Gabino Nava-Bernal

Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (5) : 1759 -1771.

PDF
Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (5) : 1759 -1771. DOI: 10.1007/s11676-019-00954-5
Original Paper

Identification of Arceuthobium globosum using unmanned aerial vehicle images in a high mountain forest of central Mexico

Author information +
History +
PDF

Abstract

The identification of forests infested by parasitic plants is important for the design of appropriate control and prevention strategies. Satellite images and geographic information systems are commonly used to analyze the presence of pest and parasitic plants in the forests. However there is a need for finer resolution. In the last decade, the use of unmanned aerial vehicles has become increasingly common for capturing aerial images (< 10 cm per pixel). The objective of the study was to obtain RGB values (Red, Green and Blue) through the colorimetric ranges for use in identification of Yellow Dwarf Mistletoe (YDM) (Arceuthobium globosum) in aerial images taken in a forest of central Mexico via a programmed algorithm. Three tonalities of YDM were classified according to its phenological stages, viz. green (young stage), yellow (adult stage), and brown (senescence stage), considering two light intensities, sunny and cloudy. Non-parametric tests were used in statistical analyses. The Spearman test showed significant negative correlation (p < 0.001) between phenological stage and colour, indicating that lower RGB values were associated with greater age. The differences between groups were analysed using Kruskal–Wallis (p < 0.01) and Mann–Whitney tests (p < 0.01). The applied algorithm identified the presence and predominant colours of YDM according to its phenological stage.

Keywords

Colorimetric analysis / RGB / Pinus hartweggi / Parasitic plants / Remote sensing

Cite this article

Download citation ▾
Luis A. León-Bañuelos, Angel R. Endara-Agramont, William Gómez-Demetrio, Carlos G. Martínez-García, E. Gabino Nava-Bernal. Identification of Arceuthobium globosum using unmanned aerial vehicle images in a high mountain forest of central Mexico. Journal of Forestry Research, 2019, 31(5): 1759-1771 DOI:10.1007/s11676-019-00954-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adamsen FJ, Pinter PJ Jr, Barnes EM, La Morte RL, Wall GW, Leavitt SW, Kimball BA. Measuring wheat senescence with a digital camera. Crop Sci, 1999, 39: 719-724.

[2]

Allen CD, Macalady AK, Chenchouni H, Bachelet D, Mcdowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Sw Running, Semerci A, Cobb N. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage, 2010, 259: 660-684.

[3]

Barnoaiea I, Iacobescu O. Using pixel and object based IKONOS image analysis for studying decay in silver fir stands. Ann For Res, 2008, 52(1): 151-162.

[4]

Berni JAJ, Zarco-Tejada PJ, Suárez L, Fereres E. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans Geosci Remote Sens, 2009, 47: 722-738.

[5]

Bunning E, Moser I. Interference of moonlight with the photoperiodic measurement of time by plants, and their adaptive reaction. Proc Natl Acad Sci USA, 1969, 62(4): 1018-1022.

[6]

Campo L, Corrales J, Ledezma A. Remote sensing for agricultural crops based on a low cost quadcopter. Sist Telemát, 2015, 13(34): 49-63.

[7]

Casado MR, Gonzalez RB, Kriechbaumer T, Veal A. Automated identification of river hydromorphological features using UAV high resolution aerial imagery. Sensors, 2015, 15: 27969-27989.

[8]

Cedillo AM (2012) Distribución espacial y análisis de la presencia de plagas forestales en el Parque Nacional Nevado de Toluca. Tesis de licenciatura Universidad Autónoma del Estado de México, México

[9]

Chen ZH, Chen WJ, Leblanc SG, Henry GHR. Digital photograph analysis for measuring percent plant cover in the arctic. Arctic, 2010, 63(3): 315-326.

[10]

Christensen B (2015) Use of UAV or remotely piloted aircraft and forward-looking infrared in forest, rural and wildland fire management: evaluation using simple economic analysis. N Z J For Sci 45(1). https://doi.org/10.1186/s40490-015-0044-9

[11]

Cibrián D, Vázquez I, Cibrián J. Cibrián D, Alvarado D, García D. Muérdagos enanos del género Arceuthobium. Enfermedades forestales en México, 2007, Montecillo: Universidad Autónoma de Chapingo 357 395

[12]

CONAFOR (Comisión Nacional Forestal) (2005) Manual de Sanidad Forestal. Gerencia de Sanidad Forestal. Coordinación General de Conservación Forestal, México. 51 p

[13]

CONANP (Comisión Nacional de Áreas Naturales Protegidas) (2017) Programa de Manejo Área de Protección de Flora y Fauna Nevado de Toluca. México, pp 4–11

[14]

Cruzan MB, Weinstein BG, Grasty MR, Kohrn BF, Hendrickson EC, Arredondo TM, Thompson PG (2016) Small unmanned aerial vehicles (Micro-Uavs, Drones) in plant ecology. Appl Plant Sci 4(9). http://doi.org/103732/apps1600041

[15]

Danilov AS, Smirnov UD, Pashkevich MA. The system of the ecological monitoring of environment which is based on the usage of UAV. Rus J Ecol, 2015, 46(1): 14-19.

[16]

Das IC (2004) Spectral signatures and spectral mixture modeling as a tool for targeting aluminous laterite and bauxite ore deposits, Koraput. http://www.gisdevelopment.net/application/geology/mineral/geom0017.htm. Accessed 11 Dec 2017

[17]

Dekel G (2016) RGB and CMYK Colour systems, United Kingdom. http://www.poeticmind.co.uk/research/rgb-cmyk-colour-systems/. Accessed 19 Aug 2018

[18]

Dempewolf J, Nagol J, Hein S, Thiel C, Zimmermann R. Measurement of within-season tree height growth in a mixed forest stand using UAV imagery. Forests, 2017, 8: 231.

[19]

Dobbertin M, Rigling A. Pine mistletoe (Viscum album ssp. austriacum) contributes to Scots pine (Pinus sylvestris) mortality in the Rhone valley of Switzerland. For Pathol, 2006, 36: 309-332.

[20]

Endara A, Franco S, Nava G, Valdez JI, Fredericksen T. Effect of human disturbance on the structure and regeneration of forests in the Nevado de Toluca National Park, Mexico. J For Res, 2012, 23(1): 39-44.

[21]

Fajardo-Junco J. Support for precision agriculture in Colombia using images acquired from Unmanned Aerial Vehicles (UAV’s), 2013, Colombia: Pontifica Universidad Javeriana.

[22]

Field A. Discovering statistics using IBM SPSS statistics, 2013 4 Thousand Oaks: SAGE Publications.

[23]

Franco MS, Burrola AC. Los hongos comestibles del parque nacional nevado de Toluca, 2009, México: Universidad Autónoma del Estado de México.

[24]

Franco MS, Regil-Garcia HH, Ordoñez Díaz JAB. Dinámica de perturbación-recuperación de las zonas forestales en el Parque Nacional Nevado de Toluca. Madera y Bosques, 2006, 12(1): 17-28.

[25]

García-Rodríguez MP, Pérez-González ME, Sanz-Donaire JJ, García-Alvarado JM, Redondo-García MM, Navarro-Madrid A, Guerra-Zaballos A (2016) Aplicaciones de las investigaciones sobre degradación medioambiental y sellado de suelos a la docencia de la geografía, facultad de Geografía e historia, Universidad Complutense de Madrid. pp 6–7

[26]

González LF, Montes GA, Puig E, Johnson S, Mengersen K, Gaston, KJ (2016) Unmanned aerial vehicles (UAVs) and artificial intelligence revolutionizing wildlife monitoring and conservation. Sensors (Switzerland) 16(1). https://doi.org/10.3390/s16010097

[27]

Gitelson AA, Kaufman YJ, Stark R, Rundquist D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens, 2002, 80: 76-87.

[28]

Hawksworth F, Wiens DG. Dwarf mistletoes: biology, pathology, and systematics, 1996, Washington D. C.: United States Department of Agriculture/Forest Service.

[29]

Kaliardos B, Lyall B (2014) Human factors of unmanned aircraft system integration in the national airspace system. In: Valavanis, KP, Vachtsevanos, GJ (eds) Handbook of unmanned aerial vehicles. Springer, Dordrecht pp 2135–2158

[30]

Klosterman S, Richardson AD. Observing spring and fall phenology in a deciduous forest with aerial drone imagery. Sensors (Switzerland), 2017, 17(12): 1-17.

[31]

Koh L, Wich SA (2012) Dawn of drone ecology: low-cost autonomous aerial vehicles for conservation. Trop Conserv Sci 5(2):121–132. http://hdl.handlenet/2440/84717

[32]

Laliberte AS, Rango A, Herrick JE, Fredrickson EL, Burkett L. An object-based image analysis approach for determining fractional cover of senescent and green vegetation with digital plot photography. J Arid Environ, 2007, 69: 1-14.

[33]

Lehmann JRK, Nieberding F, Prinz T, Knoth C. Analysis of unmanned aerial system-based CIR images in forestry—a new perspective to monitor pest infestation levels. Forests, 2015, 6: 594-612.

[34]

Ludovisi R, Tauro F, Salvati R, Khoury S, Mugnozza Scarascia G, Harfouche A. UAV-Based thermal imaging for high-throughput field phenotyping of black poplar response to drought. Front Plant Sci, 2017, 8: 1-18.

[35]

Marchal VD (2009) El Muérdago en la Ciudad de México. Revista de divulgación electrónica Árbol-AMA, Asociación Mexicana de Arboricultura, México, http://www.tlalpan.gob.mx/convocatorias/Enfermedades-arbolado.pdf. Accessed 4 Apr 2017

[36]

McRoberts RE, Tomppo EO, Czaplewski RL. Diseños de muestreo de las evaluaciones forestales nacionales. Antología de conocimiento para la evaluación de los recursos forestales nacionales, 1992, Roma: FAO 21

[37]

Méndez MJT, Magaña TOS. Evaluación externa de los apoyos de reforestación, 2007, México: Obras y Prácticas de Conservación de Suelos y Sanidad Forestal.

[38]

Mlambo R, Woodhouse IH, Gerard F, Anderson K. Structure from Motion (SfM) photogrammetry with drone data: a low cost method for monitoring greenhouse gas emissions from forests in developing countries. Forests, 2017, 8: 68.

[39]

Navia J, Mondragon I, Patino D, Colorado J (2016) Multispectral mapping in agriculture: terrain mosaic using an autonomous quadcopter UAV. In: International conference on unmanned aircraft systems, ICUAS

[40]

Ojeda BW, Flores VJ, Unland WHK. Drones y sistemas de información geográfica en la ingeniería hidroagrícola, 2014, México: Instituto Mexicano de Tecnología del Agua Coordinación de Riego y Drenaje.

[41]

Pavelka K, Faltynova M, Matouskova E, Sedina J (2015) Biodiversity, forest condition mapping and forest harvesting monitoring using UAV. In: ACRS 2015—36th Asian conference on remote sensing: fostering resilient growth in asia, proceedings

[42]

Perry JP (1991) The pines of Mexico and Central America Timber Press Portland, Oregon 231 p

[43]

Ramírez DJF, González AJL (2007) Modelización y mapeo de la distribución espacial del muérdago enano (Arceuthobium sp) en la ladera sur del Parque Nacional Nevado de Toluca Revista de Geografía Agrícola [en linea] 2007, (enero-junio): [Fecha de consulta: 15 de agosto de 2017] Disponible en:<http://www.redalycorg/articulooa?id=75703803>ISSN0186–4394

[44]

Ramírez-Chávez EJ, Cruz-García A, Lagunas-Pérez AG, Carreño-Reyes OE. Uso de vehículos aéreos no tripulados para la caracterización del paisaje sumergido; Bahía Estacahuite, 2013, Oaxaca: Universidad de Mar.

[45]

Reinoso JF, Gonçalves JE, Pereira C, Bleninger T. Cartography for civil engineering projects: photogrammetry supported by unmanned aerial vehicles. Iran J Sci Technol Trans Civ Eng, 2018, 42(1): 91-96.

[46]

Richardson AD, Braswell BH, Hollinger DY, Jenkins JP, Ollinger SV. Near-surface remote sensing of spatial and temporal variation in canopy phenology. Ecol Appl, 2009, 19: 1417-1428.

[47]

Rincón V, Molina A, Torres-León JL, Herazo A. Perspectivas de la tecnología VANT en el cultivo de palma de aceite: monitorización del cultivo mediante imágenes aéreas de alta resolución. Palmas, 2015, 36(3): 25-41.

[48]

Rzedowski J (1978) Vegetación de México, Limusa México, p 432

[49]

Rzedowski J (1981) Principales comunidades vegetales En: Rzedowski, J y Rzedowski, G C DE (eds) Flora fanerogámica del Valle de México. Vol I CECSA México, DF pp 47–54

[50]

Rzedowski J. Ramamoorthy TP, Bye R, Lot A, Fa J. Diversidad y orígenes de la flora fanerogámica de México. Diversidad biológica de México: orígenes y distribución Instituto de Biología, 1998, México: UNAM 129 145

[51]

Saghri JA, Laghar MS, Boujarwah A, Tescher AG (1998) Spectral-signature-preserving compression of multispectral data. In: Applications of digital image processing Conference No21, San Diego CA, ETATSUNIS (21/07/1998) 1998, vol 3460, pp 399–410

[52]

Salamí E, Barrado C, Pastor E. UAV flight experiments applied to the remote sensing of vegetated areas. Remote Sens Environ, 2014, 6: 11051-11081.

[53]

Staley D (2017) Remote sensing and assessment of Urban forests with unmanned aerial vehicles, City Trees, society of muncipal arborists North America, pp 18–23. http://nysufc.org/wpcontent/uploads/2017/11/Drones-in-Urban-Forestry-Dan-Staley.pdf. Accessed 22 Nov 2017

[54]

Tang LN, Shao GF. Drone remote sensing for forestry research and practices. J For Res, 2015, 26(4): 791-797.

[55]

Vilches A, Gil-Pérez D, Toscano JC, Macías O (2010) Tecnociencia para la sostenibilidad. [artículo en línea] OEI ISBN 978-84-7666-213-7. http://www.oeies/decada/accionphp?accion=003. Accessed 25 Sept 2017

[56]

Wallace L, Lucieer A, Malenovský Z, Turner D, Vopěnka P. Assessment of forest structure using two UAV techniques: a comparison of airborne laser scanning and structure from Motion (SfM) point clouds. Forests, 2016, 7: 62.

[57]

Wang BK, Xiang WN, Guo XL, Liu JJ. Wang K, Xiang WN, Guo X, Liu J. Remote sensing of forestry studies. Global perspectives on sustainable forest management, 2012, Croatia: Intech 205 216

[58]

Watts AC, Ambrosia VG, Hinkley EA. Unmanned aircraft systems in remote sensing and scientific research: classification and considerations of use. Remote Sens, 2012, 4: 1671-1692.

[59]

Wulder MA, Hall RJ, Franklin SE. Aronoff S. Remote sensing and GIS in forestry. Remote sensing for GIS managers, 2005, Redlands: ESRI Press 351 362

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/