Identification of Arceuthobium globosum using unmanned aerial vehicle images in a high mountain forest of central Mexico
Luis A. León-Bañuelos , Angel R. Endara-Agramont , William Gómez-Demetrio , Carlos G. Martínez-García , E. Gabino Nava-Bernal
Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (5) : 1759 -1771.
Identification of Arceuthobium globosum using unmanned aerial vehicle images in a high mountain forest of central Mexico
The identification of forests infested by parasitic plants is important for the design of appropriate control and prevention strategies. Satellite images and geographic information systems are commonly used to analyze the presence of pest and parasitic plants in the forests. However there is a need for finer resolution. In the last decade, the use of unmanned aerial vehicles has become increasingly common for capturing aerial images (< 10 cm per pixel). The objective of the study was to obtain RGB values (Red, Green and Blue) through the colorimetric ranges for use in identification of Yellow Dwarf Mistletoe (YDM) (Arceuthobium globosum) in aerial images taken in a forest of central Mexico via a programmed algorithm. Three tonalities of YDM were classified according to its phenological stages, viz. green (young stage), yellow (adult stage), and brown (senescence stage), considering two light intensities, sunny and cloudy. Non-parametric tests were used in statistical analyses. The Spearman test showed significant negative correlation (p < 0.001) between phenological stage and colour, indicating that lower RGB values were associated with greater age. The differences between groups were analysed using Kruskal–Wallis (p < 0.01) and Mann–Whitney tests (p < 0.01). The applied algorithm identified the presence and predominant colours of YDM according to its phenological stage.
Colorimetric analysis / RGB / Pinus hartweggi / Parasitic plants / Remote sensing
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
Cedillo AM (2012) Distribución espacial y análisis de la presencia de plagas forestales en el Parque Nacional Nevado de Toluca. Tesis de licenciatura Universidad Autónoma del Estado de México, México |
| [9] |
|
| [10] |
Christensen B (2015) Use of UAV or remotely piloted aircraft and forward-looking infrared in forest, rural and wildland fire management: evaluation using simple economic analysis. N Z J For Sci 45(1). https://doi.org/10.1186/s40490-015-0044-9 |
| [11] |
|
| [12] |
CONAFOR (Comisión Nacional Forestal) (2005) Manual de Sanidad Forestal. Gerencia de Sanidad Forestal. Coordinación General de Conservación Forestal, México. 51 p |
| [13] |
CONANP (Comisión Nacional de Áreas Naturales Protegidas) (2017) Programa de Manejo Área de Protección de Flora y Fauna Nevado de Toluca. México, pp 4–11 |
| [14] |
Cruzan MB, Weinstein BG, Grasty MR, Kohrn BF, Hendrickson EC, Arredondo TM, Thompson PG (2016) Small unmanned aerial vehicles (Micro-Uavs, Drones) in plant ecology. Appl Plant Sci 4(9). http://doi.org/103732/apps1600041 |
| [15] |
|
| [16] |
Das IC (2004) Spectral signatures and spectral mixture modeling as a tool for targeting aluminous laterite and bauxite ore deposits, Koraput. http://www.gisdevelopment.net/application/geology/mineral/geom0017.htm. Accessed 11 Dec 2017 |
| [17] |
Dekel G (2016) RGB and CMYK Colour systems, United Kingdom. http://www.poeticmind.co.uk/research/rgb-cmyk-colour-systems/. Accessed 19 Aug 2018 |
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
García-Rodríguez MP, Pérez-González ME, Sanz-Donaire JJ, García-Alvarado JM, Redondo-García MM, Navarro-Madrid A, Guerra-Zaballos A (2016) Aplicaciones de las investigaciones sobre degradación medioambiental y sellado de suelos a la docencia de la geografía, facultad de Geografía e historia, Universidad Complutense de Madrid. pp 6–7 |
| [26] |
González LF, Montes GA, Puig E, Johnson S, Mengersen K, Gaston, KJ (2016) Unmanned aerial vehicles (UAVs) and artificial intelligence revolutionizing wildlife monitoring and conservation. Sensors (Switzerland) 16(1). https://doi.org/10.3390/s16010097 |
| [27] |
|
| [28] |
|
| [29] |
Kaliardos B, Lyall B (2014) Human factors of unmanned aircraft system integration in the national airspace system. In: Valavanis, KP, Vachtsevanos, GJ (eds) Handbook of unmanned aerial vehicles. Springer, Dordrecht pp 2135–2158 |
| [30] |
|
| [31] |
Koh L, Wich SA (2012) Dawn of drone ecology: low-cost autonomous aerial vehicles for conservation. Trop Conserv Sci 5(2):121–132. http://hdl.handlenet/2440/84717 |
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
Marchal VD (2009) El Muérdago en la Ciudad de México. Revista de divulgación electrónica Árbol-AMA, Asociación Mexicana de Arboricultura, México, http://www.tlalpan.gob.mx/convocatorias/Enfermedades-arbolado.pdf. Accessed 4 Apr 2017 |
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
Navia J, Mondragon I, Patino D, Colorado J (2016) Multispectral mapping in agriculture: terrain mosaic using an autonomous quadcopter UAV. In: International conference on unmanned aircraft systems, ICUAS |
| [40] |
|
| [41] |
Pavelka K, Faltynova M, Matouskova E, Sedina J (2015) Biodiversity, forest condition mapping and forest harvesting monitoring using UAV. In: ACRS 2015—36th Asian conference on remote sensing: fostering resilient growth in asia, proceedings |
| [42] |
Perry JP (1991) The pines of Mexico and Central America Timber Press Portland, Oregon 231 p |
| [43] |
Ramírez DJF, González AJL (2007) Modelización y mapeo de la distribución espacial del muérdago enano (Arceuthobium sp) en la ladera sur del Parque Nacional Nevado de Toluca Revista de Geografía Agrícola [en linea] 2007, (enero-junio): [Fecha de consulta: 15 de agosto de 2017] Disponible en:<http://www.redalycorg/articulooa?id=75703803>ISSN0186–4394 |
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
Rzedowski J (1978) Vegetación de México, Limusa México, p 432 |
| [49] |
Rzedowski J (1981) Principales comunidades vegetales En: Rzedowski, J y Rzedowski, G C DE (eds) Flora fanerogámica del Valle de México. Vol I CECSA México, DF pp 47–54 |
| [50] |
|
| [51] |
Saghri JA, Laghar MS, Boujarwah A, Tescher AG (1998) Spectral-signature-preserving compression of multispectral data. In: Applications of digital image processing Conference No21, San Diego CA, ETATSUNIS (21/07/1998) 1998, vol 3460, pp 399–410 |
| [52] |
|
| [53] |
Staley D (2017) Remote sensing and assessment of Urban forests with unmanned aerial vehicles, City Trees, society of muncipal arborists North America, pp 18–23. http://nysufc.org/wpcontent/uploads/2017/11/Drones-in-Urban-Forestry-Dan-Staley.pdf. Accessed 22 Nov 2017 |
| [54] |
|
| [55] |
Vilches A, Gil-Pérez D, Toscano JC, Macías O (2010) Tecnociencia para la sostenibilidad. [artículo en línea] OEI ISBN 978-84-7666-213-7. http://www.oeies/decada/accionphp?accion=003. Accessed 25 Sept 2017 |
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
/
| 〈 |
|
〉 |