Analysis of symbiotic microbial status of Atlantic sand dunes forest and its effects on Acacia gummifera and Retama monosperma (Fabaceae) to be used in reforestation

Abdessamad Fakhech , Lahcen Ouahmane , Mohamed Hafidi

Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (4) : 1309 -1317.

PDF
Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (4) : 1309 -1317. DOI: 10.1007/s11676-019-00942-9
Original Paper

Analysis of symbiotic microbial status of Atlantic sand dunes forest and its effects on Acacia gummifera and Retama monosperma (Fabaceae) to be used in reforestation

Author information +
History +
PDF

Abstract

Atlantic forest natural soil flora was tested on two leguminous pioneer species Acacia gummifera and Retama monosperma to be used in rehabilitation programs of the coastal sand dunes forest of the Essaouira region. The rhizospheric soil of two endemic plant species: R. monosperma and Juniperus phoenicea was sampled and split into two categories, one from native rhizospheric soil, the other of the sterilized rhizospheric soil. Investigation was focused on mycorrhizal formations, but other forms of beneficial symbiosis such as rhizobia and viable soil microflora were also studied. Growth and nutrition variables assessed included lengths of roots and shoots, number of branches, ratio of root to shoot dry mass and water, nitrogen and phosphorus levels. Results showed important mycorrhizal associations in roots of both plants, presence of nodules and abundance of viable soil microflora. J. phoenicea had a 100% frequency of mycorrhizal formation and an intensity of 80% compared to a frequency of 80% and intensity of 54% for R. monosperma. Nodules had the same density of CFU regardless of the origin. Abundance of viable microflora in rhisospheric soil of R. monosperma, J. phoenicea and the control differed significantly. Among the studied variables for A. gummifera and R. monosperma, nitrogen and phosphorus uptakes significantly wit the use of the nonsterilized rhizospheric soil. Both species doubled their phosphorus uptake when colonized by mycorrhizal species, R. monosperma doubled its nitrogen uptake and A. gummifera increased it by seven times compared with the control. No significant difference was noted for the other variables.

Keywords

Nitrogen / Phosphorus / Juniperus phoenicea / Acacia gummifera / Retama monosperma / Mycorrhizae / Rhizobia

Cite this article

Download citation ▾
Abdessamad Fakhech, Lahcen Ouahmane, Mohamed Hafidi. Analysis of symbiotic microbial status of Atlantic sand dunes forest and its effects on Acacia gummifera and Retama monosperma (Fabaceae) to be used in reforestation. Journal of Forestry Research, 2019, 31(4): 1309-1317 DOI:10.1007/s11676-019-00942-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amijee F, Tinker PB, Stribley DP. The development of endomycorrhizal root systems. New Phytol, 1989, 111: 435-446.

[2]

Angers DA, Caron J. Plant-induced changes in soil structure: processes and feedbacks. Biogeochemistry, 1998, 42: 61.

[3]

Bacon CW, Hinton DM. Symptomless endophytic colonization of maize by Fusarium moniliforme. Can J Bot, 1996, 74: 1195-1202.

[4]

Blaszkowski J (2003) Arbuscular mycorrhizal fungi (Glomeromycota), Endogone and Complexipes species deposited in the Department of Plant Pathology, University of Agriculture Szczecin, Poland. http://www.zor.zut.edu.pl/Glomeromycota/index.html. Accessed 19 Mar 2019

[5]

Błaszkowski J, Czerniawska B. Arbuscular mycorrhizal fungi (Glomeromycota) associated with roots of Ammophila arenaria growing in maritime dunes of Bornholm (Denmark). Acta Soc Bot Pol, 2011, 80: 63-76.

[6]

CHM Clearing House Mechanisms on Biodiversity of Morocco (2006) Dunes d’Essaouira (L25). http://ma.chm-cbd.net/manag_cons/esp_prot/sibe_ma/sibe_lit/dunes-d-essaouira-l25. Accessed 19 Mar 2019

[7]

Duponnois R, Colombet A, Hien V, Thioulouse J. The mycorrhizal fungus Glomus intraradices and rock phosphate amendment influence plant growth and microbial activity in the rhizosphere of Acacia holosericea. Soil Biol Biochem, 2005, 37: 1460-1468.

[8]

Egli H (2008) Kjeldahl guide. First edit. AG, CH-9230. Flawil,URL: www.buchi.com. Accessed 3 June 2017, ISBN: 978-3-033-03100-5. Flawil Switzerland: Büchi Labortechnik, p 159

[9]

Fisher RA, Yates F. Statistical tables for biological, agricultural and medical research. Eugen Rev, 1939, 30: 66.

[10]

Foght J, Aislabie J. Margesin R, Schinner F. Enumeration of soil microorganisms BT—monitoring and assessing soil bioremediation. Monitoring and assessing soil bioremediation, 2005, Berlin: Springer 261 280

[11]

Gerdemann JW, Nicolson TH. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc, 1963, 46: 235-244.

[12]

Giovannetti M, Nicolson TH. Vesicular-arbuscular mycorrhizas in Italian sand dunes. Trans Br Mycol Soc, 1983, 80: 552-557.

[13]

Jacobs DF, Oliet JA, Aronson J Restoring forests: What constitutes success in the twenty-first century?. New For, 2015, 46: 601-614.

[14]

Jin H, Pfeffer PE, Douds DD The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol, 2005, 168: 687-696.

[15]

Johnson NC. Can fertilization of soil select less mutualistic mycorrhizae?. Ecol Appl, 1993, 3: 749-757.

[16]

Kachi N, Hirose T. Limiting nutrients for plant growth in coastal sand dune soils. J Ecol, 1983, 71: 937-944.

[17]

Khbaya B, Neyra M, Normand P Genetic diversity and phylogeny of rhizobia that nodulate acacia spp. in Morocco Assessed by analysis of rRNA genes. Appl Environ Microbiol, 1998, 64: 4912-4917.

[18]

Kiers ET, Lovelock CE, Krueger EL, Herre EA. Differential effects of tropical arbuscular mycorrhizal fungal inocula on root colonization and tree seedling growth: implications for tropical forest diversity. Ecol Lett, 2000, 3: 106-113.

[19]

Koide RT, Li M. On host regulation of the vesicular—arbuscular mycorrhizal symbiosis. New Phytol, 1990, 114: 59-74.

[20]

Koske RE, Poison WR. Are VA mycorrhizae required for sand dune stabilization?. Bioscience, 2011, 34: 420-424.

[21]

Koske RE, Gemma JN, Corkidi L, Sigüenza C, Rincón E. Martínez ML, Psuty N. Arbuscular mycorrhizas in coastal dunes. Coastal dunes SE-11, 2004, Berlin: Springer 173 187

[22]

Mack KML, Rudgers JA. Balancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes. Oikos, 2008, 117: 310-320.

[23]

Morton J (2017) International culture collection of (Vesicular) arbuscular mycorrhizal fungi,. http://invam.wvu.edu/. Accessed 19 Mar 2019

[24]

Nicolson TH. Mycorrhiza in the Gramineae. Trans Br Mycol Soc, 1960, 43: 132-IN10.

[25]

HKO Hong Kong Observatory (2012) Climatological Information for Essaouira, Morocco. http://www.weather.gov.hk/wxinfo/climat/world/eng/africa/mor_al/essaouira_e.htm. Accessed 19 Mar 2019

[26]

Olsen SR. Estimation of available phosphorus in soils by extraction with sodium bicarbonate, 1954, Washington, DC: Department of Agriculture, USDA Circ 24

[27]

Ouahmane L, Hafidi M, Thioulouse J. Improvement of Cupressus atlantica Gaussen growth by inoculation with native arbuscular mycorrhizal fungi. J Appl Microbiol, 2007, 103: 683-690.

[28]

Ouahmane L, Ibrahima N, Abdessadek M, Abderrahim F. Inoculation of Ceratonia siliqua L. with native arbuscular mycorrhizal fungi mixture improves seedling establishment under greenhouse conditions. Afr J Biotechnol, 2012, 11: 16422-16426.

[29]

Pansu M, Gautheyrou J. Handbook of soil analysis: mineralogical, organic and inorganic methods, 2007, Berlin: Springer 995

[30]

Pasqualini D, Uhlmann A, Stürmer SL. Arbuscular mycorrhizal fungal communities influence growth and phosphorus concentration of woody plants species from the Atlantic rain forest in South Brazil. For Ecol Manag, 2007, 245: 148-155.

[31]

Phillips JM, Hayman DS. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc, 1970, 55: 158-IN18.

[32]

Porter WM. The most probable number method for enumerating infective propagules of vesicular arbuscular mycorrhizal fungi in soil. Aust J Soil Res, 1979, 17: 515-518.

[33]

Rambelli A. Marks GC, Kozlowski TT. The rhizosphere of mycorrhizae. Ectomycorrhizae: their ecology and physiology, 1973, New York: Academic Press 299 349

[34]

Richter BS, Stutz JC. Mycorrhizal inoculation of big sacaton: implications for grassland restoration of abandoned agricultural fields. Restor Ecol, 2002, 10: 607-616.

[35]

Rillig MC, Mummey DL. Mycorrhizas and soil structure. New Phytol, 2006, 171: 41-53.

[36]

Schachtman DP, Reid RJ, Ayling SM Update on phosphorus uptake phosphorus uptake by plants: from soil to cell. Plant Physiol, 1998, 116: 447-453.

[37]

Sfairi Y, Ouahmane L, Abbad A. Breaking seed dormancy in Cupressus atlantica Gaussen, an endemic and threatened coniferous tree in Morocco. J For Res, 2012, 23: 385-390.

[38]

Sieber T, Grünig C. Schulz BE, Boyle CC, Sieber T. Biodiversity of fungal root-endophyte communities and populations, in particular of the dark septate endophyte Phialocephala fortinii s. l. Microbial root endophytes SE-7, 2006, Berlin: Springer 107 132

[39]

Smith TF. The effect of season and crop rotation on the abundance of spores of vesicular-arbuscular (V-A) mycorrhizal endophytes. Plant Soil, 1980, 57: 475-479.

[40]

Somasegaran P, Hoben HJ. Handbook for rhizobia: methods in legume-Rhizobium technology, 2012, Berlin: Springer.

[41]

St-Denis A, Kneeshaw D, Bélanger N. Species-specific responses to forest soil inoculum in planted trees in an abandoned agricultural field. Appl Soil Ecol, 2017, 112: 1-10.

[42]

Su Y-Y, Sun X, Guo L-D. Seasonality and host preference of arbuscular mycorrhizal fungi of five plant species in the Inner Mongolia steppe, china. Braz J Microbiol, 2011, 42: 57-65.

[43]

Sylvia DM, Will ME. Establishment of vesicular-arbuscular mycorrhizal fungi and other microorganisms on a beach replenishment site in Florida. Appl Environ Microbiol, 1988, 54: 348-352.

[44]

Trouvelot A, Kough JL, Gianinazzi-Pearson VG. Gianinazzi-Pearson V, Gianinazzi S. Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methodes d’estimation ayant une signification functionnelle. Physiological and genetic aspects of mycorrhizae, 1986, Paris: INRA Press 217 221

[45]

Vallés SM, Fernández JBG, Dellafiore C, Cambrollé J. Effects on soil, microclimate and vegetation of the native-invasive Retama monosperma (L.) in coastal dunes. Plant Ecol, 2011, 212: 169-179.

[46]

Van Der Heijden MGA, Klironomos JN, Ursic M Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 1998, 396: 69-72.

[47]

Vincent JM. A manual for practical study of root nodule bacteria. IBP Handbook No. 15, 1970, Oxford: Oxford Blackwell Scientific Publishers 164

[48]

Walker C, Mize CW, McNabb HS. Populations of endogonaceous fungi at two locations in central Iowa. Can J Bot, 1982, 60: 2518-2529.

[49]

Williams A, Ridgway HJ, Norton DA. Growth and competitiveness of the New Zealand tree species Podocarpus cunninghamii is reduced by ex-agricultural AMF but enhanced by forest AMF. Soil Biol Biochem, 2011, 43: 339-345.

[50]

Zangaro W, Bononi VLR, Trufen SB. Mycorrhizal dependency, inoculum potential and habitat preference of native woody species in South Brazil. J Trop Ecol, 2000, 16: 603-621.

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/