Genetic diversity and structure of Drimys brasiliensis in southern Brazil: insights for conservation

Alexandre Mariot , Tiago Montagna , Maurício Sedrez dos Reis

Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (4) : 1325 -1332.

PDF
Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (4) : 1325 -1332. DOI: 10.1007/s11676-019-00934-9
Original Paper

Genetic diversity and structure of Drimys brasiliensis in southern Brazil: insights for conservation

Author information +
History +
PDF

Abstract

Population genetics studies are widely recognized for generating useful knowledge for biodiversity conservation. To date, however, little is known about the levels and distribution of genetic diversity of Drymis brasiliensis (Miers LC), a tree species from the Atlantic Rainforest. Therefore, in this study, we investigated how genetic diversity is distributed within and among populations of D. brasiliensis from southern Brazil using allozyme markers to genotype reproductive trees (8 populations) and seedlings (3 populations). Furthermore, in two populations, we established two permanent plots (5.1 and 1 ha) to analyze fine-scale genetic structure (FSGS). Studied populations presented low levels of genetic diversity (reproductive = 0.085; seedlings = 0.054) and high fixation indexes (reproductive = 0.396; seedlings = 0.231). Genetic divergence among populations was equal to 0.05, which is significant, signaling that few populations can conserve large portions of the species total genetic diversity. FSGS was only detected for one population, when reproductive individuals were separated by less than 40 m. Low genetic diversity combined with high fixation indexes clearly signal a risk of losing diversity. Therefore, conservation efforts should be aimed at enhancing gene flow within the studied populations.

Keywords

Atlantic Rainforest / Effective population size / Fine-scale genetic structure / Seed collection

Cite this article

Download citation ▾
Alexandre Mariot, Tiago Montagna, Maurício Sedrez dos Reis. Genetic diversity and structure of Drimys brasiliensis in southern Brazil: insights for conservation. Journal of Forestry Research, 2019, 31(4): 1325-1332 DOI:10.1007/s11676-019-00934-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alfenas AC. Eletroforese de isoenzimas e proteínas afins: fundamentos e aplicações em plantas e microorganismos, 1998, Viçosa: Editora Universidade Federal de Viçosa 574

[2]

Antiqueira LMOR, Kageyama PY. Genetic diversity of four populations of Qualea grandiflora Mart. in fragments of the Brazilian Cerrado. Genetica, 2014, 142: 11-21.

[3]

Backes P, Irgang BE. Árvores do sul: guia de identificação e interesse ecológico, 2002, Santa Cruz do Sul: Clube da Árvore, Instituto Souza Cruz 326

[4]

Bawa KS. Plant-pollinator interactions in Tropical Rain Forests. Annu Rev Ecol Syst, 1990, 21: 399-422.

[5]

CNCFlora (2012) Drimys brasiliensis. Lista Vermelha da flora brasileira versão 2012.2. http://cncflora.jbrj.gov.br/portal/pt-br/profile/Drimysbrasiliensis. Accessed 12 March 2018

[6]

de Lacerda AEB, Kanashiro M, Sebbenn AM. Effects of reduced impact logging on genetic diversity and spatial genetic structure of a Hymenaea courbaril population in the Brazilian Amazon Forest. For Ecol Manage, 2008, 255: 1034-1043.

[7]

del Hoyo A, López-Pujol J, Chung MY, Lasso de la Vega B. Population genetics and conservation of the extremely narrow Pyrenean palaeoendemic Glandora oleifolia (Boraginaceae). Plant Ecol Divers, 2012, 5: 501-511.

[8]

Diniz-Filho JAF, Melo DB, Oliveira G, Collevatti RG, Soares TN, Nabout JC, Lima JS, Dobrovolski R, Chaves LJ, Naves RV, Loyola RD, Telles MPC. Planning for optimal conservation of geographical genetic variability within species. Conserv Genet, 2012, 13: 1085-1093.

[9]

Diniz-Filho JAF, Diniz JVBPL, Telles MPC. Exhaustive search for conservation networks of populations representing genetic diversity. Genet Mol Res, 2016, 15: 1-10.

[10]

Ellegren H, Galtier N. Determinants of genetic diversity. Nat Rev Genet, 2016, 17: 422-433.

[11]

Fægri K, van der Pijl L. The principles of pollination ecology, 1979, Oxford: Pergamon Press 224

[12]

Frankham R. Genetics and conservation biology. C R Biol, 2003, 326: 22-29.

[13]

Frankham R, Bradshaw CJA, Brook BW. Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv, 2014, 170: 56-63.

[14]

Gottsberger G, Silberbauer-Gottsberger I, Ehrendorfer F. Reproductive biology in the primitive relic Angiosperm Drimys brasiliensis (Winteraceae). Plant Syst Evol, 1980, 135: 11-39.

[15]

Goudet J (2002) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3.2). http://www2.unil.ch/popgen/softwares/fstat.htm. Accessed 6 May 2016

[16]

Hamrick JL, Godt MJW. Soltis D, Soltis P. Allozyme diversity in plant species. Isozymes in plant biology, 1989, Portland: Dioscorides Press 43 63

[17]

Hardy OJ, Vekemans X. SPAGeDi: a versatile computer program to analyse spatial. Mol Ecol Notes, 2002, 2: 618-620.

[18]

Hedrick PW. Conservation genetics: where are we now?. Trends Ecol Evol, 2001, 16: 629-636.

[19]

Hmeljevski KV, Reis A, Montagna T, Reis MS. Genetic diversity, genetic drift and mixed mating system in small subpopulations of Dyckia ibiramensis, a rare endemic bromeliad from Southern Brazil. Conserv Genet, 2011, 12: 761-769.

[20]

Li CC. Population genetics, 1976, Chicago: University Chicago Press 366

[21]

Loiselle BA, Sork VL, Nason J, Graham C. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot, 1995, 82: 1420-1425.

[22]

López-Sepúlveda P, Takayama K, Greimler J, Crawford DJ, Peñailillo P, Baeza M, Ruiz E, Kohl G, Tremetsberger K, Gatica A, Letelier L, Novoa P, Novak J, Stuessy TF. Progressive migration and anagenesis in Drimys confertifolia of the Juan Fernández Archipelago, Chile. J Plant Res, 2014, 128: 73-90.

[23]

Lowe AJ, Boshier D, Ward M, Bacles CFE, Navarro C. Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity, 2005, 95: 255-273.

[24]

Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res, 1967, 27: 209-220.

[25]

Mantovani A, Morellato LPC, Reis MS. Internal genetic structure and outcrossing rate in a natural population of Araucaria angustifolia (Bert.) O. Kuntze. J Hered, 2006, 97: 466-472.

[26]

Mariot A, Mantovani A, Bittencourt R, Ferreira DK, Reis MS. Estrutura populacional e incremento corrente anual de casca-de-anta (Drimys brasiliensis Miers—Winteraceae) em Caçador, Santa Catarina, Brasil. Rev Bras Plantas Med, 2010, 12: 168-178.

[27]

Mariot A, Mantovani A, Bittencourt R, Reis MS. Aspectos da biologia reprodutiva de Drimys brasiliensis Miers (Winteraceae) em Floresta Ombrófila Mista, Sul do Brasil. Ciência Florest, 2014, 24: 877-888.

[28]

Mathiasen P, Premoli AC. Fine-scale genetic structure of Nothofagus pumilio (lenga) at contrasting elevations of the altitudinal gradient. Genetica, 2013, 141: 95-105.

[29]

Medina-Macedo L, Sebbenn AM, Lacerda AEB, Ribeiro JZ, Soccol CR, Bittencourt JVM. High levels of genetic diversity through pollen flow of the coniferous Araucaria angustifolia: a landscape level study in Southern Brazil. Tree Genet Genomes, 2015, 11: 1-14.

[30]

Montagna T, Ferreira DK, Steiner F, Loch FASS, Bittencourt R, Silva JZ, Mantovani A, Reis MS. A importância das Unidades de Conservação na manutenção da diversidade genética de araucária (Araucaria angustifolia) no Estado de Santa Catarina. Biodivers Bras, 2012, 2: 17-24.

[31]

Montagna T, Lauterjung MB, Candido-Ribeiro R, Silva JZ, Hoeltgebaum MP, Costa NCF, Bernardi AP, Reis MS. Spatial genetic structure, population dynamics and spatial patterns in the distribution of Ocotea catharinensis Mez. from southern Brazil: implications for conservation. Can J For Res, 2018, 48: 506-516.

[32]

Neel MC, Ellstrand NC. Conservation of genetic diversity in the endangered plant Eriogonum ovalifolium var. vineum (Polygonaceae). Conserv Genet, 2003, 4: 337-352.

[33]

Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci U S A, 1973, 70: 3321-3323.

[34]

Paludo GF (2013) Aspectos populacionais de Araucaria angustifolia em paisagem de campo e de floresta. M.Sc thesis of Universidade Federal de Santa Catarina, Florianópolis, Brazil

[35]

Reis MS, Montagna T, Mattos AG, Filippon S, Ladio AH, Marques AC, Zechini AA, Peroni N, Mantovani A. Domesticated landscapes in Araucaria Forests, Southern Brazil: a multispecies local conservation-by-use system. Front Ecol Evol, 2018, 6: 11.

[36]

Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv, 2009, 142: 1141-1153.

[37]

Rousset F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics, 1997, 145: 1219-1228.

[38]

Tarazi R, Mantovani A, Reis MS. Fine-scale spatial genetic structure and allozymic diversity in natural populations of Ocotea catharinensis Mez. (Lauraceae). Conserv Genet, 2010, 11: 965-976.

[39]

Trinta EF, Santos E. Winteráceas: flora ilustrada catarinense, 1997, Herbário Barbosa Rodrigues: Itajaí 20

[40]

Vekemans X, Hardy OJ. New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol, 2004, 13: 921-935.

[41]

Vibrans AC, Mcroberts R, Lingner DV, Nicoletti AL, Moser P. Vibrans AC, Sevegnani L, Gasper AL, Lingner DV. Extensão original e atual da cobertura florestal de Santa Catarina. Inventário florístico florestal de Santa Catarina—Diversidade e conservação dos remanescentes florestais, 2012, Blumenau: Edifurb 65 78

[42]

Weir BS, Cockerham CC. Estimating F-Statistics for the analysis of population structure. Evolution, 1984, 38: 1358-1370.

[43]

White GM, Boshier DH, Powell W. Increased pollen flow counteracts fragmentation in a tropical dry forest: an example from Swietenia humilis Zuccarini. Proc Natl Acad Sci USA, 2002, 99: 2038-2042.

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/