Novel in silico EST-SSR markers and bioinformatic approaches to detect genetic variation among peach (Prunus persica L.) germplasm

Mehrana Koohi Dehkordi , Tayebeh Beigzadeh , Karim Sorkheh

Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (4) : 1359 -1370.

PDF
Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (4) : 1359 -1370. DOI: 10.1007/s11676-019-00922-z
Original Paper

Novel in silico EST-SSR markers and bioinformatic approaches to detect genetic variation among peach (Prunus persica L.) germplasm

Author information +
History +
PDF

Abstract

Because there are thousands of peach cultivars, cultivar classification is a critical step before starting a breeding project. Various molecular markers such as simple sequence repeats (SSRs) can be used. In this study, 67 polymorphic primers produced 302 bands. Higher values for SI index (1.903) suggested higher genetic variability in the genotype under investigation. Mean values for observed alleles (Na), expected heterozygosity (He), effective alleles (Ne), Nei’s information index (h), and polymorphic information content (PIC) were 4.5, 0.83, 5.45, 0.83, and 0.81, respectively. The dendrogram constructed based on Jaccard’s similarity coefficients outlined four distinct clusters in the entire germplasm. In addition, an analysis of molecular variance (AMOVA) showed that 70.68% of the total variation was due to within-population variation, while 29.32% was due to variation among populations. According to this research, all primers were successfully used for the peach accessions. The EST-SSR markers should be useful in peach breeding programs and other research.

Keywords

Expressed sequenced tags (EST) / Simple sequence repeats (SSR) / Prunus persica L. / Genetic diversityl

Cite this article

Download citation ▾
Mehrana Koohi Dehkordi, Tayebeh Beigzadeh, Karim Sorkheh. Novel in silico EST-SSR markers and bioinformatic approaches to detect genetic variation among peach (Prunus persica L.) germplasm. Journal of Forestry Research, 2019, 31(4): 1359-1370 DOI:10.1007/s11676-019-00922-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amirbakhtiar N, Shiran B, Moradi H, Sayed-Tabatabaei BE. Molecular characterization of almond cultivars using microsatellite markers. Acta Hort, 2006, 726: 51-56.

[2]

Andersen JR, Lubberstedt T. Functional markers in plants. Trends Plant Sci, 2003, 8: 554-560.

[3]

Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME. Optimizing parental selection for genetic linkage maps. Genome, 1993, 36: 181-186.

[4]

Aranzana MJ, Garcia-Mas J, Carbo´ J, Aru´s P. Development and variability analysis of microsatellite markers in peach. Plant Breed, 2002, 121: 87-92.

[5]

Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Aru´s P. A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet, 2003, 106: 819-825.

[6]

Arolu IW, Rafii MY, Hanafi MM, Mahmud TMM, Latif MA. Molecular characterization of Jatropha curcas germplasm using inter simple sequence repeat (ISSR) markers in Peninsular Malaysia. Aust J Crop Sci, 2012, 6: 1666-1673.

[7]

Benson LL, Lamboy WF, Zimmerman RH. Molecular identification of Malus hupehensis (tea crabapple) accessions using simple sequence repeats. Hortic Sci, 2001, 36: 961-966.

[8]

Blair MW, Gonza´lez LF, Kimani PM, Butare L. Genetic diversity, inter-gene pool introgression and nutritional quality of common beans (Phaseolus vulgaris L.) from Central Africa. Theor Appl Genet, 2010, 121: 237-248.

[9]

Cantini C, Iezzoni AF, Lamboy WF, Boritzki M, Struss D. DNA fingerprinting of tetraploid cherry germplasm using SSR. J Am Soc Hortic Sci, 2001, 126: 205-209.

[10]

Chen CX, Zhou P, Choi YA, Huang S, Gmitter FG. Mining and characterizing microsatellites from Citrus ESTs. Theor Appl Genet, 2006, 112: 1248-1257.

[11]

Chen CX, Bock CH, Okie WR, Gmitter FG, Jung S, Main D, Beckman TG, Wood BW. Genome-wide characterization and selection of expressed sequence tag simple sequence repeat primers for optimized marker distribution and reliability in peach. Tree Genet Genomes, 2014, 10: 1271-1279.

[12]

Cipriani G, Lot G, HuangWG Peterlunger E, Testolin R. AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L.) Batsch]: isolation, characterization and cross-species amplification in Prunus. Theor Appl Genet, 1999, 99: 65-72.

[13]

Decroocq V, Favé MG, Hagen L, Bordenave L, Decroocq S. Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet, 2003, 106: 912-922.

[14]

Dettori MT, Micali S, Giovinazzi J, Scalabrin S, Verde I, Cipriani G. Mining microsatellites in the peach genome: development of new long-core SSR marker for genetic analyses in five Prunus species. Springerplus, 2015, 4: 337.

[15]

Ding MM, Wang K, Wang WT, Chen MJ, Wu DJ, Xu CJ, Chen KS. Development of high quality EST-SSR markers without stutter bands in peach and their application in cultivar discrimination and hybrid authentication. Hortic Sci, 2017, 52: 24-30.

[16]

Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Aru´s P, Laigret F. Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry. Theor Appl Genet, 2002, 105: 127-138.

[17]

Du QZ, Zhang DQ, Li BL. Development of 15 novel microsatellite markers from cellulose synthase genes in Populus tomentosa (Salicaceae). Am J Bot, 2012, 99: 46-48.

[18]

Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005, 14: 2611-2620.

[19]

Excoffier L, Laval G, Schneider S. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online, 2005, 1: 47-50.

[20]

Fathi A, Ghareyazi B, Haghnazari A, Ghaffari MR, Pirseyedi SM, Kadkhodaei S, Naghavi MR, Mardi M. Assessment of the genetic diversity of almond (Prunus dulcis) using microsatellite markers and morphological traits. Iran J Biotechnol, 2008, 6(2): 98-106.

[21]

Fu N, Wang PY, Liu XD, Shen HL. Use of EST-SSR markers for evaluating genetic diversity and fingerprinting Celery (Apium graveolens L.) cultivars. Molecules, 2014, 19: 1939-1955.

[22]

Guichoux E, Lagache L, Wagner S, Chaumeil P, Leger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Salin F, Petit RJ. Current trends in microsatellite genotyping. Mol Ecol Resour, 2011, 11: 591-611.

[23]

Hagen LS, Chaib J, Fad B, Decrocq V, Bouchet JP, Lambert P, Audergon JM. Genomic and cDNA microsatellites from apricot (Prunus armeniaca L). Mol Ecol Notes, 2004, 4: 742-745.

[24]

Hu J, Wang LY, Li J. Comparison of genomic SSR and EST-SSR markers for estimating genetic diversity in cucumber. Biol Plant, 2011, 55: 577-580.

[25]

Huang XQ, Madan A. CAP3: a DNA sequence assembly program. Genome Res, 1999, 9: 868-877.

[26]

Jaccard P. Nouvelles recherches sur la distribution florale. Bull Soc Vaud des Sci Nat, 1908, 44: 223-270.

[27]

Kantety RV, La Rota M, Matthews DE, Sorrells ME. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol, 2002, 48: 501-510.

[28]

Kumar H, Kaur G, Banga S. Molecular characterization and assessment of genetic diversity in sesame (Sesamum indicum L.) germplasm collection using ISSR markers. J Crop Improv, 2012, 26: 540-557.

[29]

Lamboy WF, Alpha CG. Using simple sequence repeats (SSRs) for fingerprinting germplasm accessions of grape (Vitis L.) species. J Am Soc Hortic Sci, 1998, 123: 182-188.

[30]

Li G, Ra WH, Park JW, Kwon SW, Lee JH, Park CB, Park YJ. Developing EST-SSR markers to study molecular diversity in Liriope and Ophiopogon. Biochem Syst Ecol, 2011, 39: 241-252.

[31]

Li XY, Shangguan LF, Song CN, Wang C, Gao ZH, Yu HP, Fang JG. Analysis of expressed sequence tags from Prunus mume flower and fruit and development of simple sequence repeat markers. BMC Genet, 2014, 11: 66.

[32]

Ma RC, Xie H, Xu Y, Ma Y, Jiang YQ, Cao MQ. Molecular analysis of almond germplasm in China. Options Mediterr, 2003, 63: 281-290.

[33]

Martínez-Gómez P, Arulsekar S, Potter D, Gradziel TM. An extended interspecific gene pool available to peach and almond breeding as characterized using simple sequence repeat (SSR) markers. Euphytica, 2003, 131: 313-322.

[34]

Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet, 2002, 30: 194-200.

[35]

Mujaju C, Sehic J, Nybom H. Assessment of EST-SSR markers for evaluating genetic diversity in Watermelon accessions from Zimbabwe. Am J Plant Sci, 2013, 4: 1448-1456.

[36]

Murray HC, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucl. Acids Res., 1980, 8: 4321-4325.

[37]

Nagaraj SH, Gasser RB, Ranganathan S. A hitchhiker’s guide to expressed sequence tag (EST) analysis. Brief Bioinform, 2007, 8: 6-21.

[38]

Parsons JB, Newbury HT, Jackson MT, Ford-Lloyd BV. Contrasting genetic diversity relationships are revealed in rice (Oryza sativa L.) using different marker types. Mole Breed, 1997, 3: 115-125.

[39]

Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J. TIGR gene indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics, 2003, 19: 651-652.

[40]

Pritchard JK, Stephens M, Rosenberg NA, Donnelly P. Association mapping in structured populations. Am J Hum Genet, 2000, 67: 170-181.

[41]

Rao NK. Plant genetic resources: advancing conservation and use through biotechnology. Afr J Biotechnol, 2004, 3: 136-145.

[42]

Rohlf FJ. NTSYS-pc: numerical taxonomy system ver.2.1, 2002, New York: Exeter Publishing Ltd..

[43]

Shiran B, Amirbakhtiar N, Kiani S, Mohammadi S, Sayed-Tabatabaei BE, Moradi H. Molecular characterization and genetic relationship among almond cultivars assessed by RAPD and SSR markers. Sci Hortic, 2007, 111: 280-292.

[44]

Sorkheh K, Shiran B, Gradziel TM, Epperson BK, Martinez-Gomez P, Asadi E. Amplified fragment length polymorphism as a tool for molecular characterization of almond germplasm: genetic diversity among cultivated genotypes and related wild species of almond, and its relationships with agronomic traits. Euphytica, 2007, 156: 327-344.

[45]

Sorkheh K, Prudencio AS, Ghebinejad A, Kohei Dehkordi M, Erogul D, Rubio M, Martínez-Gómez P. In silico search, characterization and validation of new EST-SSR markers in the genus Prunus. BMC Res Notes, 2016, 9: 336.

[46]

Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG. Characterization of microsatellite markers in peach [Prunuspersica (L.) Batsch]. Theor Appl Genet, 2000, 101: 421-428.

[47]

Testolin R, Marrazzo T, Cipriani G. Microsatellite DNA in peach [Prunus persica (L.) Batsch] and its use in fingerprinting and testing the genetic origin of cultivars. Genome, 2000, 43: 512-520.

[48]

Varshney RK, Graner A, Sorrells ME. Genic microsatellite markers in plants: features and applications. Trends Biotech, 2005, 23: 48-55.

[49]

Vendramin E, Dettori MT, Giovinazzi J, Micali R, Quarta R, Verde I. A set of EST-SSRs isolated from peach fruit transcriptome and their transportability across Prunus species. Mol Ecol Notes, 2007, 7: 307-310.

[50]

Wang Y, Georgi LL, Zhebentyayeva TN, Reighard GL, Scorza R, Abbott AG. High throughput targeted SSR marker development in peach [Prunus persica (L.) Batsch]. Genome, 2002, 45: 319-328.

[51]

Wang YJ, Li XY, Han J, Fang WM, Li XD, Wang SS, Fang JG. Analysis of genetic relationships and identification of flowering-mei cultivars using EST-SSR markers developed from apricot and fruiting-mei. Scientia Hortic, 2014, 132: 12-17.

[52]

Weising K, Nybon H, Wolff K, Meyer W. DNA fingerprinting in plants and fungi, 1995, Boca Raton: CRC Press.

[53]

Whitfield CW, Band MR, Bonaldo MF, Kumar CG, Liu L, Pardinas JR, Robertson HM, Soares MB, Robinson GE. Annotated expressed sequence tags and cDNA microarrays for studies of brain and behavior in the honey bee. Genome Res, 2001, 12: 555-566.

[54]

Xie H, Sui Y, Chang FQ, Xu Y, Ma RC. SSR allelic variation in almond (Prunus dulcis Mill). Theor Appl Genet, 2006, 112: 366-372.

[55]

Xu Y, Ma RC, Xie H, Liu JT, Cao MQ. Development of SSR markers for the phylogenetic analysis of almond trees from China and the Mediterranean region. Genome, 2004, 47: 1091-1104.

[56]

Yamamoto T, Mochida K, Imai T, Shi IZ, Ogiwara I, Hayashi T. Microsatellite markers in peach [Prunus persica (L.) Batsch] derived from an enriched genomic and cDNA libraries. Mol Ecol Notes, 2002, 2: 298-302.

[57]

Yeh FC, Yang R, Boyle TJ, Ye Z, Xiyan JM. PopGene32, Microsoft Windows based Freeware for Population Genetic Analysis, Version 1.32, 2000, Edmonton: Molecular Biology and Biotechnology Centre, University of Alberta.

[58]

Zeinalabedini M, Majourhat K, Khayam-Nekoui M, Grigorian V, Torchi M, Dicenta F, Martinez-Gomez P. Molecular characterization of almond cultivars and related wild species using nuclear and chloroplast DNA markers. J Food Agric Environ, 2007, 5(3–4): 242-247.

[59]

Zhang GW, Xu SC, Mao WH, Hu QZ, Gong YM. Determination of the genetic diversity of vegetable soybean [Glycine max (L.) Merr.] using EST-SSR markers. J Zhejiang Univ Sci B, 2013, 14: 279-288.

[60]

Zhebentyayeva T, Reighard G, Gorina V, Abbott A. Simple sequence repeat (SSR) analysis for assessment of genetic variability in apricot germplasm. Theor Appl Genet, 2003, 106: 435-444.

[61]

Zhen YQ, Li ZZ, Huang HW, Wang Y. Molecular characterization of kiwifruit (Actinidia) cultivars and selections using SSR markers. J Am Soc Hortic Sci, 2004, 129: 374-382.

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/