The growth and production modeling of individual trees of Eucalyptus urophylla plantations

João Victor Nobre Carrijo , Ana Beatriz de Freitas Ferreira , Marcela Costa Ferreira , Mário César de Aguiar , Eder Pereira Miguel , Eraldo Aparecido Trondoli Matricardi , Alba Valéria Rezende

Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (5) : 1663 -1672.

PDF
Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (5) : 1663 -1672. DOI: 10.1007/s11676-019-00920-1
Original Paper

The growth and production modeling of individual trees of Eucalyptus urophylla plantations

Author information +
History +
PDF

Abstract

Individual tree models (ITMs) are classified as growth and production models for projecting current and future forest stands. ITMs are more complex than other growth and production models, show a higher level of detail and, consequently, produce a better modeling resolution. However, the accuracy and efficiency of ITMs have not been properly assessed to date. In this study, we estimated the growth in height, diameter, and individual tree volume of a Eucalyptus urophylla plantation by applying an ITM. We used a continuing forest inventory dataset in which 1554 individual trees within 29 permanent plots were measured in the field over a 6-year period (24 to 72 months). Each individual tree volume was estimated for future tree age. To achieve this, we adjusted the model to predict the height and diameter growth, and the probability of mortality as a function of the competition index. The ITM accuracy was assessed based on the analysis of variance results and, subsequently, the multiple mean comparison test at the 5% significance level. The tree volumes predicted by the ITM for the forest stand aged 72 months, beginning at ages 24, 36, 48, and 60 months, were compared to the field measured tree volume acquired from the 72-month forest inventory that was used as the reference age. Estimated and observed tree volumes were similar when the estimation was based on the 48-month forest plots. These results might help to reduce financial costs of forest inventory because the ITM produces accurate future predictions of forest stand stocks. Our estimated ITM for Eucalyptus plantations using measurement intervals up to 2 years is recommended because it significantly reduced the projected volume discrepancy compared to the field measurements.

Keywords

Competition index / Forest production / Forest site / Simulation models / Tree mortality

Cite this article

Download citation ▾
João Victor Nobre Carrijo, Ana Beatriz de Freitas Ferreira, Marcela Costa Ferreira, Mário César de Aguiar, Eder Pereira Miguel, Eraldo Aparecido Trondoli Matricardi, Alba Valéria Rezende. The growth and production modeling of individual trees of Eucalyptus urophylla plantations. Journal of Forestry Research, 2019, 31(5): 1663-1672 DOI:10.1007/s11676-019-00920-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G. Köppen’s climate classification map for Brazil. Meteorol Z, 2014, 22(6): 711-728.

[2]

Assmann E. The principles of forest yield study, 1970, Oxford: Pergamon Press 520

[3]

Bartlett MS. Multivariate analysis. J R Stat Soc B, 1947, 9(2): 176-197.

[4]

Binoti DHB, Binoti MLMS, Leite HG. Aplicação da função hiperbólica na construção de curvas de índice de local. Rev Arvore, 2012, 36(4): 741-746.

[5]

Burkhart HE, Tomé M. Modeling forest trees and stands, 2012, Dordrecht: Springer 458

[6]

Campos JCC, Leite HG. Mensuração florestal: perguntas e respostas, 2017, Viçosa: Editora UFV 636

[7]

Carrijo JVN, Miguel EP, Rezende AV, Gaspar RO, Martins IS, Meira Junior MS, Angelo H, Jesus CM. Morphometric indexes and dendrometric measures for classification of forest sites of Eucalyptus urophylla stands. Aust J Crop Sci, 2017, 11(9): 1146-1153.

[8]

Castro RVO (2011) Modelagem do crescimento em nível de árvores individuais utilizando redes neurais e autômatos celulares. Master’s thesis, Departamento de Engenharia Florestal, Universidade Federal de Viçosa, Viçosa, p 80

[9]

Castro RVO, Soares CPB, Leite HG, Souza AL, Nogueira GS, Martins FB. Individual growth model for Eucalyptus stands in Brazil using artificial neural network. ISRN For, 2013, 2013: 1-12.

[10]

Castro RVO, Soares CPB, Martins FB, Leite HG. Crescimento e produção de plantios comerciais de eucalipto estimados por duas categorias de modelos. Pesqui Agropecu Bras, 2013, 48(3): 287-295.

[11]

Castro RVO, Soares C, Leite H, Souza A, Martins F, Nogueira G, Oliveira M, Silva F. Competição em nível de árvore individual em uma floresta estacional semidecidual. Silva Lusit, 2014, 22(1): 43-66.

[12]

Castro RVO, Cunha AB, Silva LV, Leite HG, Silva AAL. Modelagem do crescimento e produção para um povoamento de Eucalyptus utilizando dois métodos para quantificação do índice de local. Sci For, 2015, 43(105): 83-90.

[13]

Chassot T, Fleig FD, Finger CAG, Longhi SJ. Modelos de crescimento em diâmetro de árvores individuais de Araucaria angustifolia (Bertol) Kuntze em floresta ombrófila mista. Cienc Florest, 2011, 21(2): 303-313.

[14]

Colpini C, Travagin DP, Soares TS, Silva VSM. Determinação do volume do fator de forma e da porcentagem de casca de árvores individuais em uma Floresta Ombrófila Aberta na região noroeste de Mato Grosso. Acta Amazon, 2009, 39(1): 97-104.

[15]

Contreras MA, Affleck D, Chung W. Evaluating tree competition indices as predictors of basal area increment in western Montana forests. Forest Ecol Manag, 2011, 262(11): 1939-1949.

[16]

Cosenza DN, Soares AAV, Alcântara AEM, Silva AAL, Rode R, Soares VP, Leite HG. Site classification for eucalypt stands using artificial neural network based on environmental and management features. Cerne, 2017, 23(3): 310-320.

[17]

Daniels RF, Burkhart HE, Clason TR. A comparison of competition measures for predicting growth of loblolly pine trees. Can J Forest Res, 1986, 16(6): 1230-1237.

[18]

Davis LS, Johnson KN, Bettinger P, Howard TE. Forest management: to sustain ecological, economic, and social values, 2005, Long Grove: Waveland Press 816

[19]

Draper NR, Smith H. Applied regression analysis, 1998, New York: Willey 736

[20]

Embrapa. Sistema brasileiro de classificação de solo, 2013, Brasília: Embrapa Solos 353

[21]

Glover GR, Hool JN. A basal area ratio predictor of loblolly pine plantation mortality. For Sci, 1979, 25(2): 275-282.

[22]

González MS, Río Md, Cañellas I, Montero G. Distance independent tree diameter growth model for cork oak stands. For Ecol Manag, 2006, 225(1–3): 262-270.

[23]

Guimarães Júnior JB, Protásio TP, Mendes RF, Mendes LM, Guimarães BMR, Siqueira HF. Qualidade de painéis LVL produzidos com madeira de clones de Eucalyptus urophylla. Pesqui Florest Bras, 2015, 35(83): 307-313.

[24]

Hevia A, Cao QV, Álvarez-González JG, Ruiz-González AD, Kv Gadow. Compatibility of whole-stand and individual-tree models using composite estimators and disaggregation. For Ecol Manag, 2015, 348: 46-56.

[25]

Hui GY, Wang Y, Zhang GQ, Zhao ZH, Bai C, Liu WZ. A novel approach for assessing the neighborhood competition in two different aged forests. For Ecol Manag, 2018, 422: 49-58.

[26]

IBÁ (2017) Relatório IBÁ 2017 ano base 2016. http://iba.org/images/shared/Biblioteca/IBA_RelatorioAnual2017.pdf [accessed 21.02.18]

[27]

Jardim JM, Gomes FJB, Colodette JL, Brahim BP. Avaliação da qualidade e desempenho de clones de eucalipto na produção de celulose. O Papel, 2017, 78(11): 122-129.

[28]

Krisnawati H, Wang Y, Ades PK. Generalized height-diameter models for Acacia mangium Willd. plantations in south Sumatra. J For Res, 2010, 7(1): 1-19.

[29]

Leal FA, Cabacinha CD, Castro RVO, Matricardi EAT. Amostragem de árvores de Eucalyptus na cubagem rigorosa para estimativa de modelos volumétricos. Rev Bras de Biom, 2015, 33(1): 91-103.

[30]

Levenberg K. A method for the solution of certain nonlinear problems in least squares. Q Appl Math, 1944, 2: 164-168.

[31]

Lhotka JM. Examining growth relationships in Quercus stands: an application of individual-tree models developed from long-term thinning experiments. For Ecol Manag, 2017, 385: 65-77.

[32]

Lorimer CG. Test of age-independent competition indices for individual trees in natural hardwood stands. For Ecol Manag, 1983, 6(4): 343-360.

[33]

Lumbres RIC, Lee YJ, Yun CW, Koo CD, Kim SB, Son YM, Lee KH, Won HK, Jung SC, Seo YO. DBH-height modeling and validation for Acacia mangium and Eucalyptus pellita in Korintiga Hutani Plantation, Kalimantan Indonesia. For Sci Technol, 2015, 11(3): 119-125.

[34]

Ma W, Lei XD. Nonlinear simultaneous equations for individual-tree diameter growth and mortality model of natural Mongolian oak forests in northeast China. Forests, 2015, 6: 2261-2280.

[35]

Machado AS, Figura MA, Silva LCR, Nascimento RGM, Quirino SMS, Teo SJ. Dinâmica de crescimento de plantios jovens de Araucaria angustifolia e Pinus taeda. Pesqui Florest Bras, 2010, 30(62): 165-170.

[36]

Maleki K, Kiviste A. Individual tree mortality of silver birch (Betula pendula Roth) in Estonia. iForest, 2016, 9: 643-651.

[37]

Maleki K, Kiviste A, Korjus H. Analysis of individual tree competition effects on diameter growth of silver birch in Estonia. For Syst, 2015 24 2 e023

[38]

Marquardt DW. An algorithm for least squares estimation of nonlinear parameters. SIAM J Appl Math, 1963, 11: 431-441.

[39]

Martínez-Zurimendi P, Domínguez-Domínguez M, Juárez-García A, López-López LM, de-la Cruz-Arias V, Álvarez-Martínez J. Índice de sitio y producción maderable en plantaciones forestales de Gmelina arborea en Tabasco México. Rev Fitotec Mex, 2015, 38(4): 415-425.

[40]

Martins FB, Soares CPB, Leite HG, Souza AL, Castro RVO. Índices de competição em árvores individuais de eucalipto. Pesqui Agropecu Bras, 2011, 46(9): 1089-1098.

[41]

Martins FB, Soares CPB, Silva GF. Individual tree growth models for Eucalyptus in northern Brazil. Sci Agric, 2014, 71(3): 212-225.

[42]

McTague JP, Weiskittel AR. Individual-tree competition indices and improved compatibility with stand-level estimates of stem density and long-term production. Forests, 2016, 7(10): 238-253.

[43]

Mendes LM, Loschi FAP, Paula LER, Mendes RF, Guimarães Júnior JB, Mori FA. Potencial de utilização da madeira de clones de Eucalyptus urophylla na produção de painéis cimento-madeira. Cerne, 2011, 17(1): 69-75.

[44]

Miguel EP, Rezende AV, Pereira RS, Azevedo GB, Mota FCM, Souza AN, Joaquim MS. Modeling and prediction of volume and aereal biomass of the tree vegetation in a Cerradão area of central Brazil. Interciencia, 2017, 42(1): 21-27.

[45]

Miranda ROV, David HC, Ebling AA, Môra R, Fiorentin LD, Soares ID. Estratificação hipsométrica em classes de sítio e de altura total em plantios clonais de eucaliptos. Adv For Sci, 2014, 1(4): 113-119.

[46]

Miranda ROV, Figueiredo Filho A, Machado AS, Castro RVO, Fiorentin LD, Bernett LG. Modelagem da mortalidade em povoamentos de Pinus taeda L. Sci For, 2017, 45(115): 435-444.

[47]

Moreno PC, Palmas S, Escobedo FJ, Cropper WP, Gezan AS. Individual-tree diameter growth models for mixed Nothofagus second growth forests in southern Chile. Forests, 2017, 8(12): 506-521.

[48]

Murillo-Brito Y, Domínguez-Domínguez M, Martínez-Zurimendi P, Lagunes-Espinoza LC, Aldrete A. Índice de sitio en plantaciones de Cedrela odorata en el trópico húmedo de México. FCA Uncuyo, 2017, 49(1): 15-31.

[49]

Oheimb GV, Lang AC, Bruelheide H, Forrester DI, Wäsche I, Yu MJ, Härdtle W. Individual-tree radial growth in a subtropical broad-leaved forest: the role of local neighbourhood competition. For Ecol Manag, 2011, 261(3): 499-507.

[50]

Oliveira MLR, Leite HG, Nogueira GS, Garcia SLR, Souza AL. Classificação da capacidade produtiva de povoamentos não desbastados de clones de eucalipto. Pesqui Agropecu Bras, 2008, 43(11): 1559-1567.

[51]

Orellana E, Figueiredo Filho A, Péllico Netto S, Vanclay JK. A distance-independent individual-tree growth model to simulate management regimes in native Araucaria forests. J For Res-JPN, 2016, 22(1): 30-35.

[52]

Pedersen , Bollandsås OM, Gobakken T, Næsset E. Deriving individual tree competition indices from airborne laser scanning. For Ecol Manag, 2012, 280: 150-165.

[53]

Pereira JC, Dias PAS, Mergulhão RC, Thiersch CR, Faria LC. Modelo de crescimento e produção de Clutter adicionado de uma variável latente para predição do volume em um plantio de Eucalyptus urograndis com variáveis correlacionadas espacialmente. Sci For, 2016, 44(110): 393-403.

[54]

Petrou P, Kitikidou K, Milios E, Koletta J, Mavroyiakoumos A. Site index curves for the golden oak species (Quercus alnifolia). Bosque, 2015, 36(3): 497-503.

[55]

Pothier D. Relationships between patterns of stand growth dominance and tree competition mode for species of various shade tolerances. For Ecol Manag, 2017, 406: 155-162.

[56]

Pretzsch H, Biber P, Dursky J. The single tree-based stand simulator SILVA: construction, application and evaluation. For Ecol Manag, 2002, 162(1): 3-21.

[57]

Rangel L, Moreno P, Trejo S, Valero S. Propriedades de tableros aglomerados de partículas fabricados com madera de Eucalyptus urophylla. Maderas Cienc Tecnol, 2017, 19(3): 373-386.

[58]

Reiner DA, Silveira ER, Szabo MS. O uso do eucalipto em diferentes espaçamentos como alternativa de renda e suprimento da pequena propriedade na região sudoeste do Paraná. Synerg Scyentifica, 2011, 6(1): v10-v18.

[59]

Reis AA, Melo ICNA, Protásio TP, Trugilho PF, Carneiro ACO. Efeito de local e espaçamento na qualidade do carvão vegetal de um clone de Eucalyptus urophylla S. T. Blake. Floresta e Ambiente, 2012, 19(4): 497-505.

[60]

Retslaff FAZ, Filho AF, Dias NA, Bernett LG, Figura MA. Curvas de sítio e relações hipsométricas para Eucalyptus grandis na região os Campos Gerais Paraná. Cerne, 2015, 21(2): 219-225.

[61]

Ribeiro A, Ferraz Filho AC, Tomé M, Scolforo JRS. Site quality curves for African mahogany plantations in Brazil. Cerne, 2016, 22(4): 439-448.

[62]

Sales FCV, Silva JAA, Ferreira RLC, Gadelha FHL. Ajustes de modelos volumétricos para o clone Eucalyptus grandis ×  Eucalyptus urophylla cultivados no agreste de Pernambuco. Floresta, 2015, 45(4): 663-670.

[63]

Salles TT, Leite HG, Neto SNO, Soares CPB, Paiva HN, Santos FL. Modelo de Clutter na modelagem de crescimento e produção de eucalipto em sistemas de integração lavoura-pecuária-floresta. Pesqui Agropecu Bras, 2012, 47(2): 253-260.

[64]

Scolforo JRS. Biometria florestal: modelos de crescimento e produção florestal, 2006, Lavras: FAEPE-UFLA 393

[65]

Shapiro SS, Wilk MB. An analysis of variance test for normality (complete sample). Biometrika, 1965, 52(3/4): 591-611.

[66]

Silva GCC, Calegario N, Silva AAL, Cruz JP, Leite HG. Site index curves in thinned and non-thinned eucalyptus stands. For Ecol Manag, 2018, 408: 36-44.

[67]

Spurr SH. Forestry inventory, 1952, New York: Ronald Press 476

[68]

Stage AR. Prognosis model for stand development, 1973, Washington: USDA Forest Service 32p

[69]

Statsoft (2007) Statistica: data analysis software system, version 7. http://www.statsoft.com

[70]

Strimbu VC, Bokalo M, Comeau PG. Deterministic models of growth and mortality for jack pine in boreal forests of western Canada. Forests, 2017, 8(11): 410-426.

[71]

Tian N, Fang SZ, Yang WX, Shang XL, Fu XX. Influence of Container Type and Growth Medium on Seedling Growth and Root Morphology of Cyclocarya paliurus during Nursery Culture. Forests, 2017, 8(10): 2-16.

[72]

Tomé M, Burkhart HE. Distance-dependent competition measures for predicting growth of individual trees. For Sci, 1989, 35(3): 816-831.

[73]

Tukey JW. The problem of multiple comparisons, 1953, Princeton: Princeton University 300

[74]

Vibrans AC, Moser P, Oliveira LZ, Maçaneiro JP. Generic and specific stem volume models for three subtropical forest types in southern Brazil. Ann For Sci, 2015, 72(6): 865-874.

[75]

Vospernik S, Monserud RA, Sterba H. Comparing individual-tree growth modes using principles of stand growth for Norway spruce, Scots pine, and European beech. Can J For Res, 2015, 45(8): 1006-1018.

[76]

Weiskittel AR, Hann DW, Kershaw JA Jr, Vanclay JK. Forest growth and yield modeling, 2011, Chichester: Wiley 430

[77]

Weiskittel AR, Kuehne C, McTague JP, Oppenheimer M. Development and evaluation of an individual tree growth and yield model for the mixed species forest of the Adirondacks region of New York USA. For Ecosyst, 2016, 3: 26.

[78]

Yang YQ, Titus SJ, Huang SM. Modeling individual tree mortality for white spruce in Alberta. Ecol Model, 2003, 163(3): 209-222.

[79]

Zlatanov T, Velichkov I, Hinkov G, Georgieva M, Eggertsson O, Hreidarsson S, Zlatanova M, Georgiev G. Site index curves for European chestnut (Castanea sativa Mill.) in Belasitsa Mountain. Šumar list, 2012, 136(3–4): 153-159.

AI Summary AI Mindmap
PDF

175

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/