Identification of tree groups used by secondary cavity-nesting birds to simplify forest management in subtropical forests

Alejandro A. Schaaf , Román A. Ruggera , Ever Tallei , Constanza G. Vivanco , Luis Rivera , Natalia Politi

Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (4) : 1417 -1424.

PDF
Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (4) : 1417 -1424. DOI: 10.1007/s11676-019-00918-9
Original Paper

Identification of tree groups used by secondary cavity-nesting birds to simplify forest management in subtropical forests

Author information +
History +
PDF

Abstract

In tropical and subtropical forest ecosystems, cavities formed by decay processes are a key but scarce resource for birds that nest and roost in them, which makes them a highly sensitive group to logging. The piedmont forest of northwestern Argentina is a complex ecosystem with 113 tree and 120 bird species. It has high logging pressure on the few, well-conserved forest remnants, complicating the delineation of sustainable management guidelines for each tree or bird species in a short time. Our objective was to reduce the complexity of subtropical forests by grouping tree species according to the characteristics used by secondary cavity-nesting birds (i.e. non excavators). In the piedmont forest, 50 plots of 0.25 ha were sampled to record cavity trees and cavity characteristics. These were then used in a cluster analysis to form tree groups. Additionally, cavities were searched to identify the bird species using the decay-formed cavities. A total of 187 cavity trees, comprising 23 tree species, were recorded, and these formed four tree groups or clusters. We recorded 86 cavities that were used by secondary cavity-nesting bird species. The four tree groups were unequally used by secondary cavity nesters. The tree group that included valuable timber species (Myroxylon peruiferum, Anadenanthera colubrina and Calycophyllum multiflorum) and had the greatest cavity availability represented 71% of total cavity use. Another tree group with valuable timber species (Cedrela balansae and Amburana cearensis), measured > 73 cm DBH and > 21 m tall, had cavity entrances > 0.10 cm2, and contributed 14% of all cavity use by birds. A third group had no highly economically valuable tree species, and included the snag category (i.e. standing dead trees) as well as a 15% of cavity use. The fourth tree group had a DBH < 0.40 cm, only one highly economically valuable tree species (Cordia trichotoma), and supported no cavity use. The clustering of subtropical trees can reduce the complexity of these forests, hence easing their management by focusing on those groups with tree species showing similar characteristics and providing suitable nesting sites for secondary cavity-nesting birds.

Keywords

Biodiversity / Cavity-nesting birds / Conservation / Logging

Cite this article

Download citation ▾
Alejandro A. Schaaf, Román A. Ruggera, Ever Tallei, Constanza G. Vivanco, Luis Rivera, Natalia Politi. Identification of tree groups used by secondary cavity-nesting birds to simplify forest management in subtropical forests. Journal of Forestry Research, 2019, 31(4): 1417-1424 DOI:10.1007/s11676-019-00918-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aitken KE, Martin K. The importance of excavators in hole-nesting communities: availability and use of natural tree holes in old mixed forests of western Canada. J Ornithol, 2007, 148(2): 425-434.

[2]

Arias M, Bianchi AR (1996) Estadísticas climatológicas de la provincia de Salta. EEA Salta. In: Dirección de Medio Ambiente y Recursos Naturales, Gobierno de Salta, Salta, Argentina

[3]

Blundo C, Malizia LR (2009) Impacto del aprovechamiento forestal en la estructura y diversidad de la Selva Pedemontana. In: Brown AD, Blendinger PG, Lomáscolo T, García Bes P (eds) En: Selva pedemontana de las Yungas, historia natural, ecología y manejo de un ecosistema en peligro. pp 387–406

[4]

Bocanegra-González KT, Fernández-Méndez F, Galvis-Jiménez JD. Grupos funcionales de árboles en bosques secundarios de la región Bajo Calima (Buenaventura, Colombia). Bol Cient Museo Hist Nat, 2015, 19: 17-40.

[5]

Brown AD, Malizia LR. Las selvas pedemontanas de las Yungas. Cienc Hoy, 2004, 14(83): 52-63.

[6]

Brown AD, Grau HR, Malizia LR, Grau A (2001) Argentina. In: Kappelle M, Brown AD (eds) Bosques nublados del Neotrópico. InBio, Santo Domingo de Heredia, Costa Rica, pp 623–659

[7]

Brown AD, Blendinger PG, Lomáscolo T, Bes PG (2009) Selva pedemontana de las Yungas. Historia natural, ecología y manejo de un ecosistema en peligro. Ediciones del Subtrópico. Tucumán, Argentina, pp 213–273

[8]

Casanoves F, Pla L, Di Rienzo JA (2011a) Valoración y análisis de la diversidad funcional y su relación con los servicios ecosistémicos. Centro Agronómico Tropical de Investigación y Enseñanza. Turrialba, Costa Rica, p 84

[9]

Casanoves F, Pla L, Di Rienzo JA, Díaz S. FDiversity: a software package for the integrated analysis of functional diversity. Methods Ecol Evol, 2011, 2(3): 233-237.

[10]

Cockle KL, Martin K, Wesołowski T. Woodpeckers, decay, and the future of cavity-nesting vertebrate communities worldwide. Front Ecol Environ, 2011, 9(7): 377-382.

[11]

Cockle KL, Martin K, Wiebe K. Selection of nest trees by cavity-nesting birds in the Neotropical Atlantic forest. Biotropica, 2011, 43(2): 228-236.

[12]

Cornelius C, Cockle K, Politi N, Berkunsky I, Sandoval L, Ojeda V, Rivera L, Hunter M Jr, Martin K. Cavity-nesting birds in neotropical forests: cavities as a potentially limiting resource. Ornitol Neotropical, 2008, 19(8): 253-268.

[13]

Dennis AJ, Westcott DA. Reducing complexity when studying seed dispersal at community scales: a functional classification of vertebrate seed dispersers in tropical forests. Oecologia, 2006, 149(4): 620-634.

[14]

Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2008) Software Infostat, versión 2008. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina

[15]

Drummond MA, Loveland TR. Land-use pressure and a transition to forest-cover loss in the eastern United States. Bioscience, 2010, 60(4): 286-298.

[16]

Edworthy AB, Martin K. Persistence of tree cavities used by cavity-nesting vertebrates declines in harvested forests. J Wildl Manag, 2013, 77(4): 770-776.

[17]

Gadow KV, Zhang CY, Wehenkel C, Pommerening A, Corral-Rivas J, Korol M, Myklush S, Ying G, Kiviste A, Zhao XH (2012) Forest structure and diversity. In: Pukkala T, von Gadow K (eds) Continuous cover forestry. Managing forest ecosystems, vol 23. Springer, Netherlands, pp 29–83

[18]

Gibbons P, Lindenmayer D. Tree hollows and wildlife conservation in Australia, 2002, Collingwood: CSIRO Publishing 211

[19]

Gibbons P, Lindenmayer DB, Barry SC, Tanton MT. Hollow selection by vertebrate fauna in forests of southeastern Australia and implications for forest management. Biol Conserv, 2002, 103(1): 1-12.

[20]

Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova S, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Kommareddy A. High-resolution global maps of 21st-century forest cover change. Science, 2013, 342(6160): 850-853.

[21]

Imbeau L, Savard JPL, Gagnon R. Comparing bird assemblages in successional black spruce stands originating from fire and logging. Can J Zool, 2000, 77(12): 1850-1860.

[22]

Le Roux DS, Ikin K, Lindenmayer DB, Manning AD, Gibbons P. Single large or several small? Applying biogeographic principles to tree-level conservation and biodiversity offsets. Biol Conserv, 2015, 191: 558-566.

[23]

Lindenmayer DB, Franklin JF. Conserving forest biodiversity: a comprehensive multiscaled approach, 2002, Washington: Island Press 351

[24]

Lindenmayer DB, Likens GE. The science and application of ecological monitoring. Biol Conserv, 2010, 143(6): 1317-1328.

[25]

Lindenmayer DB, Margules CR, Botkin DB. Indicators of biodiversity for ecologically sustainable forest management. Conserv Biol, 2000, 14(4): 941-950.

[26]

Lindenmayer DB, Franklin JF, Fischer J. General management principles and a checklist of strategies to guide forest biodiversity conservation. Biol Conserv, 2006, 131(3): 433-445.

[27]

Lindenmayer DB, Blanchard W, McBurney L, Blair D, Banks S, Likens GE, Franklin JF, Laurance WF, Stein JAR, Gibbons P. Interacting factors driving a major loss of large trees with cavities in a forest ecosystem. PLoS One, 2012 7 10 e41864

[28]

Malizia LR, Blendinger PG, Alvarez ME, Rivera LO, Politi N, Nicolossi G. Bird communities in Andean Premontane forests of Northwestern Argentina. Ornitol Neotropical, 2005, 16(2): 231-251.

[29]

Malizia LR, Blundo C, Pacheco S (2006) Diversidad, estructura y distribución de bosques con cedro (Cedrela sp, Meliacea) en el noroeste de Argentina y Sur de Bolivia. In: Pacheco SY, Brown AG (eds) Ecología y producción de cedros (género Cedrela) de las Yungas australes. Ediciones del Subtrópico. Tucumán, Argentina, pp 83–104

[30]

Malizia LR, Pacheco S, Loiselle B. Brown AD, Blendinger PG, Lomáscolo T, García Bes P. Árboles de valor forestal en las Yungas de la Alta Cuenca del río Bermejo. Selva pedemontana de las Yungas, historia natural, ecología y manejo de un ecosistema en peligro, 2009, Tucumán: Ediciones del Subtrópico 105 120

[31]

Martin K, Aitken KE, Wiebe KL. Nest sites and nest webs for cavity-nesting communities in interior British Columbia, Canada: nest characteristics and niche partitioning. The Condor, 2004, 106(1): 5-19.

[32]

Martinez Pastur G, Peri PL, Huertas Herrera A, Schindler S, Díaz-Delgado R, Lencinas MV, Soler R. Linking potential biodiversity and three ecosystem services in silvopastoral managed forest landscapes of Tierra del Fuego, Argentina. Int J Biodivers Sci Ecosyst Serv Manag, 2017, 13(2): 1-11.

[33]

McComb BC. Wildlife habitat management: concepts and applications in forestry, 2015, Boca Raton: Taylor and Francis Group 401

[34]

Minetti JM, Bessonart S, Balducci E (2009) La actividad forestal en la Selva Pedemontana del norte de Salta. Ecologıa, historia natural y conservación de la Selva Pedemontana de las Yungas Australes. Ediciones del Subtrópico, Tucumán, pp 367–385

[35]

Mönkkönen M, Juutinen A, Mazziotta A, Miettinen K, Podkopaev D, Reunanen P, Salminen H, Tikkanen OP. Spatially dynamic forest management to sustain biodiversity and economic returns. J Environ Manag, 2014, 134: 80-89.

[36]

Myers JA, Chase JM, Jiménez I, Jørgensen PM, Araujo-Murakami A, Paniagua-Zambrana N, Seidel R. Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecol Lett, 2013, 16(2): 151-157.

[37]

Newton I. Population limitation in birds, 1998, San Diego: Academic Press 597

[38]

Pacala S, Socolow R. Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science, 2004, 305(5686): 968-972.

[39]

Politi N, Hunter M Jr, Rivera L. Nest selection by cavity-nesting birds in subtropical Montane Forests of the Andes: implications for sustainable forest management. Biotropica, 2009, 41(3): 354-360.

[40]

Politi N, Hunter M Jr, Rivera L. Availability of cavities for avian cavity nesters in selectively logged subtropical montane forests of the Andes. For Ecol Manag, 2010, 260(5): 893-906.

[41]

Politi N, Hunter M, Rivera L. Assessing the effects of selective logging on birds in Neotropical piedmont and cloud montane forests. Biodivers Conserv, 2012, 21(12): 3131-3155.

[42]

Politi N, Rivera L, Lizárraga L, Hunter M, Defossé GE. The dichotomy between protection and logging of the Endangered and valuable timber species Amburana cearensis in north-west Argentina. Oryx, 2015, 49(1): 111-117.

[43]

Prado DE. Seasonally dry forests of tropical South America: from forgotten ecosystems to a new phytogeographic unit. Edinb J Bot, 2000, 57(3): 437-461.

[44]

Richardson DM, Bradford JW, Range PG, Christensen J. A video probe system to inspect red-cockaded woodpecker cavities. Wildl Soc Bull, 1999, 27(2): 353-356.

[45]

Ruggera RA, Schaaf AA, Vivanco CG, Politi N, Rivera LO. Exploring nest webs in more detail to improve forest management. For Ecol Manag, 2016, 372: 93-100.

[46]

van der Hoek Y, Gaona GV, Martin K. The diversity, distribution and conservation status of the tree-cavity-nesting birds of the world. Divers Distrib, 2017, 23(10): 1120-1131.

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/