Identification of chemical compounds in agarwood-producing species Aquilaria malaccensis and Gyrinops versteegii

Arie Aqmarina Nasution , Ulfah Juniarti Siregar , Miftahudin , Maman Turjaman

Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (4) : 1371 -1380.

PDF
Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (4) : 1371 -1380. DOI: 10.1007/s11676-018-00875-9
Original Paper

Identification of chemical compounds in agarwood-producing species Aquilaria malaccensis and Gyrinops versteegii

Author information +
History +
PDF

Abstract

Agarwood is a non-timber forest product found in tropical rain forests. It is a black and fragrant resin valued for the perfume industry and demand continues to increase. However, the Indonesian agarwood-producing species, Aquilaria malaccensis and Gyrinops versteegii do not automatically produce such quality resin. Bio-induction technology or inoculation using Fusarium solani is usually applied to these species to trigger resin production. This research aims to identify agarwood compounds formed in seedlings and trees of A. malaccensis and G. versteegii after these species were inoculated with the fungus F. solani. The chemical compounds were identified by comparing the patterns of mass spectra fragmentation in the sample and in previous studies. Five groups of agarwood compounds were identified: (1) sesquiterpen group—cis-jasmone and aromadendrenepoxide; (2) chromones group—8-methoxy-2-(2-phenylethyl)chromen-4-one and newly-discovered chromone derivative, 7-(benzyloxy)-5-hydroxy-2-methylchromone found only in G. versteegii; (3) aromatic group—benzylacetone, guaiacol, p-ethylguaiacol, phenol, syringaldehyde, vanilin, furfuryl alcohol, and furfural; (4) fatty acid group—palmitic acid, oleic acid, and lauric acid; and, (5) triterpen group—squalene.

Keywords

Agarwood constituent / Aquilaria malaccensis / Fusarium solani / Gyrinops versteegii

Cite this article

Download citation ▾
Arie Aqmarina Nasution, Ulfah Juniarti Siregar, Miftahudin, Maman Turjaman. Identification of chemical compounds in agarwood-producing species Aquilaria malaccensis and Gyrinops versteegii. Journal of Forestry Research, 2019, 31(4): 1371-1380 DOI:10.1007/s11676-018-00875-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baser KHC, Baser KHC. Berger RG. Chemistry of essential oils. Flavours and Fragrances. Chemistry, Bioprocessing and Sustainability, 2007, Heidelberg: Springer.

[2]

Bhuiyan NI, Begum J, Bhuiyan NH. Analysis of essential oil of agarwood tree (Aquilaria agalocha Roxb) by gas chromatography mass spectrometry. J Bangladesh Pharmacol Soc, 2009, 4(1): 24-28.

[3]

Chen HQ, Wei JH, Yang JS, Zhang Z, Yang Y, Gao ZH, Sui C, Gong B. Chemical constituents of agarwood originating from the endemic genus aquilaria plants. Chem Biodivers, 2012, 9(2): 236-250.

[4]

Cowan M. Plant products as antimicrobial agents. Clin Microbiol Rev, 1999, 12(4): 564-582.

[5]

Dharmadasa RM, Siriwardana A, Samarasinghe K, Adhihetty P. Standardization of Gyrinops Walla Gaertn. (Thymalaeaceae): newly discovered, fragrant industrial potential, endemic plant from Sri Lanka. World J Agric Res, 2013, 1(6): 101-103.

[6]

Donovan DG, Puri RK. Learning from traditional knowledge of non-timber forest products: Penan Benalui and the autecology of Aquilaria in Indonesian Borneo. Ecol Soc, 2004 9 3 3

[7]

Faizal A, Esyanti RR, Aulianisa NN, Iriawati, Santoso E, Turjaman M. Formation of agarwood from Aquilaria malaccensis in response to inoculation of local strains of Fusarium solani. Trees, 2017, 31: 189-197.

[8]

Fazila KN, Halim KHK. Effects of soaking on yield and quality of agarwood oil. J Trop For Sci, 2012, 24(4): 557-564.

[9]

Fraga BM. Natural sesquiterpenoids. Nat Prod Rep, 2013, 30(9): 1226-1264.

[10]

Gibson IAS. The role of fungi in the origin of oleoresin deposits (Agaru) in the wood of Aquillaria agallocha (Roxb.). Bano Biggyn Patrika, 1977, 6: 16-26.

[11]

Goff SA, Klee HJ. Plant volatile compounds: sensory cues for health and nutritional value. Science, 2006, 311(5762): 815-819.

[12]

Gusmailina B, Wiyono TK, Waluyo (2010) Visibility application of penetration method to improve IGW (Inoculated Gaharu Wood) quality. Research Reports, Centre for Research and Development of Forest Products, Forest Research and Development Agency Republic of Indonesia, Bogor

[13]

Handa SS, Khanuja SPS, Longo G, Rakesh D. Extraction technologies for medicinal and aromatic plants [editorial], 2008, Trieste: International Centre for Science and High Technology.

[14]

Ismail N, Rahiman MHZ, Taib MN (2016) Direct Thermal Desorption (DTD) extraction for different qualities of agarwood incense analysis. In: IEEE 12th international colloquium on signal processing and its applications (CSPA2016)

[15]

Jia DY, Yi SL. Classification of Hoi-An and Sin-Chew agarwood by component analysis of VOCs released in heat-treated agarwood using TD-GCMS and chemometric methods. BioResources, 2018, 13(2): 2916-2931.

[16]

Jong PL, Tsan P, Mohamed R. Gas chromatography-mass spectrometry analysis of agarwood extracts from mature and juvenile Aquilaria malaccensis. Int J Agric Biol, 2014, 16(3): 644-648.

[17]

Kallioinen A, Vaari A, Ratto M, Konn J, Siika-Aho M, Viikari L. Effects of bacterial treatments on wood extractives. J Biotechnol, 2003, 103(1): 67-76.

[18]

Konishi T, Konoshima T, Shimada Y, Kiyosawa S. Six new 2-(2-phenylethyl) chromones from agarwood. Chem Pharm Bull, 2002, 50: 419-422.

[19]

Kumeta Y, Ito M. Characterization of δ-guaiene synthases from cultured cells of Aquilaria, responsible for the formation of the sesquiterpenes in agarwood. Plant Physiol, 2010, 154: 1998-2007.

[20]

Lancester C, Espinoza E. Evaluating agarwood products for 2-(2-phenylethyl)chromones using direct analysis in real time time-of-flight mass spectrometry. Rap Community Mass Spectrom, 2012, 26: 2649-2656.

[21]

Lee SH, Mohamed R. Mohamed R. The origin and domestication of Aquilaria, an important agarwood-producing genus. Agarwood: science behind the fragrance, 2016, Hamburg: Springer

[22]

Li T, Rosazza JPN. Biocatalytic synthesis of vanillin. Appl Environ Microbiol, 2000, 66(2): 684-687.

[23]

Lin F, Mei WL, Wu J, Dai HF. GC–MS analysis of volatile constituents from Chinese agarwood produced by artificial methods. J Chin Med Mater, 2010, 33(2): 222-225.

[24]

Mei WL, Yang DL, Wang H, Yang JL, Zeng YB, Guo ZK, Dong WH, Li W, Dai HF. Characterisation and determination of 2-(2-phenylethyl)chromones in agarwood by GC-MS. Molecules, 2013, 18: 12324-12345.

[25]

Naef R. The volatile and semi-volatile constituents of agarwood, the infected heartwood of Aquilaria species: a review. Flavour Fragr J, 2011, 26(2): 73-87.

[26]

Novriyanti E. Siran SA, Turjaman M. Chemical study of agarwood inoculated by Fusarium sp. on Aquilaria microcarpa. Development of agarwood production technology based on community society, 2010, Bogor: Research and Development Centre for Forest and Nature Conservation.

[27]

Qiao LR, Yang L, Zou JH, Li L, Sun H, Si YK, Zhang D, Chen X, Dai J. Neolignans and sesquiterpenes from cell cultures of Stellera chamaejasme. Planta Med, 2012, 78(7): 711-719.

[28]

Rahayu G, Isnaini Y, Situmorang J (2001) Characteristics of Acremonium isolates from agarwood producing tree: morphology, isozym pattern, and its susceptibility to benomil. In: Purwantara A, Sitepu D, Mustika I (eds) Proceeding of the national congress XVI dan scientific seminar of the Indonesian phytopathological society. The Indonesian Phytopathological Society, Purwokerto, pp 455–461

[29]

Rahayu G, Santoso E, Wulandari E. Effectiveness and interaction between Acremonium sp. and Fussarium sp. in agarwood formation on Aquilaria microcarpa Baill. For Inf, 2010, 7(2): 155-164.

[30]

Santoso E. Susmianto A, Turjaman M, Setio P. Bioinduction technology of agarwood producing fungi. Track record of agarwood inoculation technology by forest research and development agency, 2014, Bogor: Forda Press.

[31]

Santoso E (2015) Valuation of cultivation agarwood technology. In: Bismark M, Turjaman M, Setio P (eds) Forda Press, Bogor

[32]

Sen S, Dehingia M, Talukdar NC, Khan M. Chemometric analysis reveals links in the formation of fragrant bio-molecules during agarwood (Aquilaria malaccensis) and fungal interactions. Sci Rep, 2017, 7: 44406.

[33]

Sitepu IR, Santoso E, Siran SA, Turjaman M (2011) Fragrant wood gaharu: when the wild can no longer provide. In: Proceedings of Program ITTO PD425/06 Rev. 1 (I): production and utilization technology for sustainable development of Gaharu (Gaharu) in Indonesia, Bogor

[34]

Subasinghe SMCUP, Hettiarachchi DS. Agarwood resin production and resin quality of Gyrinops walla Gaertn. J Agric Sci, 2013, 3(1): 357-362.

[35]

Subasinghe SMCUP, Hettiarachchi DS, Rathnamalala E. Agarwood-type resin from Gyrinops walla Gaertn: a new discovery. J Trop For Environ, 2012, 2(2): 43-48.

[36]

Tabata Y, Widjaya E, Mulyaningsih T, Parman I, Wiriadinata H, Mandang YI, Itoh T. Structural survey and artificial induction of aloeswood. Wood Res, 2003, 90: 11-12.

[37]

Taiz L, Zeiger E. Plant physiology, 2002 3 Sunderland: Sinauer Associates Publishers Inc.

[38]

Tajuddin SN, Muhamad NS, Yarmo MA, Yusoff MM. Charecterization of the chemical constituents of agarwood oils from Malaysia by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrofotometry. Mendeleev Commun, 2013, 23(1): 51-52.

[39]

Takemoto H, Ito M, Shiraki T, Yagura T, Honda G. Sedative effects of vapour inhalation of agarwood oil and spikenard extract and identification of their active components. J Nat Med, 2008, 62(1): 41-46.

[40]

Takeuchi W, Golman M. The identity of Agarwood (Gyrinops, Thymelaeaceae), a new economic resource for Papua New Guinea. SIDA Contrib Bot, 2002, 20: 261-267.

[41]

Tamuli P, Boruah P, Nath SC. Essential oil of eaglewood tree: a product of pathogenisis. J Essent Oil Res, 2005, 17: 601-604.

[42]

Turjaman M, Hidayat A, Santoso E. Mohamed R. Development of agarwood induction technology using endophytic fungi. Agarwood: science behind the fragrance, 2016, Hamburg: Springer

[43]

Wu B, Kwon SW, Hwang GS, Park JH. Eight new 2-(2-Phenylethyl)chromone (=2-(2-Phenylethyl)-4H-1-benzopyran-4-one) derivatives from Aquilaria malaccensis agarwood. Helv Chim Acta, 2012, 95(9): 1657-1665.

[44]

Xia JG, Wishart DS. Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr Protoc Bioinform, 2016, 55: 14.10.1-14.10.91.

AI Summary AI Mindmap
PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/