Morphologic characters and element content during development of Pinus tabuliformis seeds

Hui Li , Jian Zhao , Chen Zhou , Scott A. Merkle , Jin-Feng Zhang

Journal of Forestry Research ›› 2015, Vol. 27 ›› Issue (1) : 67 -74.

PDF
Journal of Forestry Research ›› 2015, Vol. 27 ›› Issue (1) : 67 -74. DOI: 10.1007/s11676-015-0157-2
Original Paper

Morphologic characters and element content during development of Pinus tabuliformis seeds

Author information +
History +
PDF

Abstract

An embryo classification system for Pinus tabuliformis Carr. was established by time-tracing sampling and observation of zygotic embryos. The zygotic embryos were divided into nine stages. Key elements of the zygotic embryo and female gametophyte (FG) tissue of P. tabuliformis were analyzed, using inductively coupled plasma-emission spectroscopy. Several elements—including aluminum, iron, sodium, and copper—are found in both embryo and FG tissue. Boron, phosphorus, magnesium, zinc, and calcium are also required for zygotic embryo development and therefore accumulated. Manganese is selectively excluded from the embryo. The zygotic embryo development needs a low-sodium and high-potassium nutrition proportion. The results of elemental analysis from zygotic embryos and FGs can provide the mineral targets for optimizing the formulation of culture medium for somatic embryogenesis.

Keywords

Embryo classification system / Zygotic embryo / Female gametophyte / Element content analysis

Cite this article

Download citation ▾
Hui Li, Jian Zhao, Chen Zhou, Scott A. Merkle, Jin-Feng Zhang. Morphologic characters and element content during development of Pinus tabuliformis seeds. Journal of Forestry Research, 2015, 27(1): 67-74 DOI:10.1007/s11676-015-0157-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Becwar MR, Nagmani R, Wann SR. Initiation of embryogenic cultures and somatic embryo development in loblolly pine (Pinus taeda). Can J For Res, 1990, 20: 810-817.

[2]

Becwar MR, Chesick EE, Handley LW (1995) Method for regeneration of coniferous plants by somatic embryogenesis. U.S. Patent No. 5, 413, 930

[3]

Behrendt U, Zoglauer K. Boron controls suspensor development in embryogenic cultures of Larix decidua. Plant Physiol, 1996, 97: 321-326.

[4]

Blank RR, Allen F, Young JA. Growth and elemental content of several sagebrush-steppe species in unburned and post-wildfire soil and plant effects on soil attributes. Plant Soil, 1994, 164: 35-41.

[5]

Brown PH, Welch RM, Cary EE. Nickel: a micro nutrient essential for higher plants. Plant Physiol, 1987, 85: 801-803.

[6]

Chatthai M, Kaukinen KH, Tranbarger TJ, Gupta PK, Misra S. The isolation of a novel metallothionein related cDNA expressed in somatic and zygotic embryos of Douglas-fir: regulation by ABA, osmoticum and metal ions. Plant Mol Biol, 1997, 34: 243-254.

[7]

Fan JF, Yang PH, Guo SJ, Liu YH. Research progress of genetics and improvement on Pinus tabulaeformis carriere of Shaanxi province. J Northwest Sci-Tech Univ Agric For, 2006, 1: 45-50.

[8]

Finer JJ, Kriebel HB, Becwar MR. Initiation of embryogenic callus and suspension cultures of eastern white pine (Pinus strobus). Plant Cell Rep, 1989, 8: 203-206.

[9]

Forber H, Giertych M. Variability of Picea abies (L.) Karst. seed size, weight, and mineral content in Poland. Arbor Kornickie, 1971, 16: 121-129.

[10]

Gerendas J, Polacco JC, Freyermuth SK, Sattelmacher B. Significance of nickel for plant growth and metabolism. J Plant Nutr Soil Sci, 1999, 162: 241-256.

[11]

Häggman H, Jokela A, Krajnakova J, Kauppi A, Niemi K, Aronen T. Somatic embryogenesis of Scots pine: cold treatment and characteristics of explants affecting induction. J Exp Bot, 1999, 50: 1769-1778.

[12]

Kim YW, Moon HK. Enhancement of somatic embryogenesis and plant regeneration in Japanese red pine (Pinus densiflora). Plant Biotechnol Rep, 2014, 8: 259-266.

[13]

Kvaalen H, Daehlen OG, Rognstad AT, Gronstad B, Egertsdotter U. Somatic embryogenesis for plant production of Abies lasiocarpa. Can J For Res, 2005, 35: 1053-1060.

[14]

Lane BG, Kajioka R, Kennedy TD. The wheat germ Ecprotein is a Zn2+ containing metallothionein. Biochem Cell Biol, 1987, 65: 1001-1005.

[15]

Li D, Zhang JF, Merkle SA. Induction of green ash embryogenic cultures with potential for scalable somatic embryo production using suspension culture. Trees, 2013, 28: 253-262.

[16]

Litvay JD, Johnson MA, Verma DC, Einsphar D, Weyrauch K (1981) Conifer suspension culture medium development using analytical data from developing seeds. Institute of Paper Chemistry, Technical paper 115

[17]

Lott JNA, Liu JC, Pennell KA, Lesage A, West MM. Iron-rich particles and globoids in embryos of seeds from phyla Coniferophyta, Cycadophyta, Gnetophyta, and Ginkgophyta: characteristics of early seed plants. Can J Bot, 2002, 80: 954-961.

[18]

McGrath SP, Zhao FJ, Lombi E. Plant and rhizosphere processes involved in phytore-mediation of metal-contaminated soils. Plant Soil, 2001, 232: 207-214.

[19]

Merkle SA, Battle PJ, Ware GO. Factors influencing production of inflorescence-derived somatic seedlings of sweetgum. Plant Cell Tissue Organ, 2003, 73: 95-99.

[20]

Miguel C, Goncalves S, Tereso S, Marum L, Maroco J, Oliveira MM. Somatic embryogenesis from 20 open-pollinated seed families of Portuguese plus trees of Maritime Pine. Plant Cell Tissue Organ, 2004, 76: 121-130.

[21]

Migula P, Przybyłowicz WJ, Mesjasz-Przybyłowicz J, Augustyniak M, Nakonieczny M, Głowacka E, Tarnawska M. Micro-PIXE studies of elemental distribution in sap-feeding insects associated with Ni hyperaccumulator, Berkheyacoddii. Plant Soil, 2007, 293: 197-207.

[22]

Nie L, Shah S, Rashid A, Burd GI, Dixon DG, Glick BR. Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth promoting bacterium enterobacter cloacae CAL2. Plant Physiol Biochem, 2002, 40: 355-361.

[23]

Pullman GS, Buchanan M. Loblolly pine (Pinus taeda L.): stage-specific elemental analyses of zygotic embryo and female gametophyte tissue. Plant Sci, 2003, 164: 943-954.

[24]

Pullman GS, Kylie B. Pine somatic embryogenesis: analyses of seed tissue and medium to improve protocol development. New For, 2014, 45: 353-377.

[25]

Pullman GS, Webb DT. An embryo staging system for comparison of zygotic and somatic embryo development. 1994, Atlanta: TAPPI

[26]

Pullman GS, Johnson S, Tassel SV, Zhang Y. Somatic embryogenesis in loblolly pine (Pinus taeda) and Douglas fir (Pseudotsuga menziesii): improving culture initiation and growth with MES pH buffer, biotin, and folic acid. Plant Cell Tissue Org, 2005, 80: 91-103.

[27]

Pullman GS, Chopra R, Chase KM. Loblolly pine (Pinus taeda L.) somatic embryogenesis: improvements in embryogenic tissue initiation by supplementation of medium with organic acids, Vitamins B12 and E. Plant Sci, 2006, 170(3): 648-658.

[28]

Reid DA, Lott JNA, Attree SM, Fowke LC. Mineral nutrition in white spruce (Picea glauca) seeds and somatic embryos. I. phosphorus, phyticacid, potassium, magnesium, calcium, iron and zinc. Plant Sci, 1999, 141: 11-18.

[29]

Salajová T, Salaj J. Somatic embryogenesis in Pinus nigra: embryogenic tissue initiation, maturation and regeneration ability of established cell lines. Biol Plant, 2005, 49(3): 333-339.

[30]

Shin H, Kim YW. Somatic embryogenesis of Pinus rigida × P. taeda and the relationship between the initiation of embryogenic tissue and zygotic embryo development. Plant Biotechnol Rep, 2012, 6: 175-181.

[31]

Silveira V, Balbuena TS, Santa-Catarina C, Floh EIS, Guerra MP, Handro W. Biochemical changes during seed development in Pinus taeda L. Plant Growth Regul, 2004, 44(2): 147-156.

[32]

Vendrame WA, Holliday CP, Montello PM, Smith DR, Merkle SA. Cryopreservation of yellow-poplar and sweetgum embryogenic cultures. New For, 2001, 21: 283-292.

[33]

Wang MB, Gao FQ. Genetic Variation in Chinese Pine (Pinus tabulaeformis), a Woody species Endemic to China. Biochem Genet, 2010, 47: 154-164.

[34]

West MM, Lott JNA. Studies of mature seeds of eleven Pinus species differing in seed weight. I. Element concentrations in embryos and female gametophytes. Can J Bot, 1993, 71: 570-576.

[35]

Xu HC, Mei SG, Wang SG, Tang Q. Geographic variation and provenance selection of Pinus tabulaeformis Carr. 1992, Beijing: China Forest Press, 23.

[36]

Xu HC, Zhai MP, Ma QY, Dong SR, Shen XH, Yan JJ, Zhang ZC, Shen RX, Shen GF, Yang JJ. Chinese pine (Pinus tabulaeformis Carr.). 1993, Beijing: China Forest Press, 10.

[37]

Zaidi S, Usmani S, Singh BR, Musarrat J. Significance of Bacillus subtilis strain SJ-101 as a bio-inoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere, 2006, 64: 991-997.

[38]

Zhuang X, Chen J, Shim H, Bai Z. New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int, 2007, 33: 406-413.

AI Summary AI Mindmap
PDF

171

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/