Purification and structural analysis of the toxin AP-I from the pathogen of Bambusa pervariabilis × Dendrocalamopsis grandis blight

Shujiang Li , Tianhui Zhu , Tianmin Qiao , Shan Han

Journal of Forestry Research ›› 2015, Vol. 26 ›› Issue (4) : 1035 -1042.

PDF
Journal of Forestry Research ›› 2015, Vol. 26 ›› Issue (4) : 1035 -1042. DOI: 10.1007/s11676-015-0129-6
Original Paper

Purification and structural analysis of the toxin AP-I from the pathogen of Bambusa pervariabilis × Dendrocalamopsis grandis blight

Author information +
History +
PDF

Abstract

Bambusa pervariabilis × Dendrocalamopsis grandis blight is caused by a toxin from the fungus Arthrinium phaeospermum (corda) M. B. Ellis. We used shaking culture in a modified Fries culture medium and methanol extraction to isolate the toxin. The optimal developing solvent mixture (methanol: ethyl acetate: H2O at 7:1.5:3) was selected using thin layer chromatography and used as the eluent for toxin purification by silica gel column chromatography. Two toxic fractions were identified in the bioassay. A flaxen oil substance, AP-I, showed higher toxicity than a toxic white powder, AP-II. The more toxic AP-I was determined to be dibutyl phthalate (C16H22O4, molecular weight of 278) by mass spectrometry, nuclear magnetic resonance, and infrared spectrophotometry. Dibutyl phthalate might contribute to the pathogenesis of bamboo blight.

Keywords

Arthrinium phaeospermum / Bambusa pervariabilis × Dendrocalamopsis grandis / Infrared spectrophotometry / Mass spectrometry / Nuclear magnetic resonance / Toxin

Cite this article

Download citation ▾
Shujiang Li, Tianhui Zhu, Tianmin Qiao, Shan Han. Purification and structural analysis of the toxin AP-I from the pathogen of Bambusa pervariabilis × Dendrocalamopsis grandis blight. Journal of Forestry Research, 2015, 26(4): 1035-1042 DOI:10.1007/s11676-015-0129-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abang MM, Abraham WR, Asiedu R, Hoffmann P, Wolf G, Winter S. Secondary metabolite profile and phytotoxic activity of genetically distinct forms of Colletotrichum gloeosporioides from yam (Dioscorea spp.). Mycol Res, 2009, 113: 130-140.

[2]

Adams WJ, Biddinger GR, Robillard KA. A summary of the acute toxicity of 14 phthalate esters to representative aquatic organisms. Environ Toxicol Chem, 1995, 14: 1569-1574.

[3]

Amnuaykanjanasin A, Daub ME. The ABC transporter ATR1 is necessary for efflux of the toxin cercosporin in the fungus Cercospora nicotianae. Fungal Genet Biol, 2009, 46: 146-158.

[4]

Andrie RM, Schoch CL, Hedges R, Spatafora JW, Ciuffetti LM. Homologs of ToxB, a host-selective toxin gene from Pyrenophora tritici-repentis, are present in the genome of sister-species Pyrenophora bromi and other members of the Ascomycota. Fungal Genet Biol, 2008, 45: 363-377.

[5]

Bloor S. Arthrinic acid, a novel antifungal polyhydroxyacid from Arthrinium phaeospermum. J Antibiot, 2008, 61: 515-517.

[6]

Bok JW, Lermer L, Chilton J. Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry, 1999, 51: 891-898.

[7]

Brain LB, Harold SG. Characterization of sugarcane response to Bipolaris sacchari: inoculations and host-specific HS-toxin. Phytopathology, 1994, 84: 672-676.

[8]

Cuq F, Henmann-Gorline S, Klaebe A, Rossignol M, Petitprez M. Monocerin in Exserohilum turcicum isolates from maize and a study of its phytotoxity. Phytochemistry, 1993, 34: 1265-1270.

[9]

Dong HS. Induced resistance against diseases in plants principle and practice. 1995, Beijing: Science Press, 62 66

[10]

Fang CR, Yao J, Zheng YG, Jiang CJ, Hu LF, Wu YY, Shen DS. Dibutyl phthalate degradation by Enterobacter sp. T5 isolated from municipal solid waste in landfill bioreactor. Int Biodeterior Biodegrad, 2010, 64: 442-446.

[11]

Fumiharu H, Hiroyasu N, Hideo H. Purification and structure determination of glucosides of capsaicin and dihydrocapsaicin from various Capsicum fruits. J Agric Food Chem, 2006, 54: 5948-5953.

[12]

Han S, Zhu TH. Isolation, purification and structure of Cp-I Toxin from Cryphonectria parasitica. Mycosystema, 2009, 28: 535-540.

[13]

Ho SH, Koh L, Ma Y, Huang Y, Sim KY. The oil of garlic, Allium sativum L. (Amaryllidaceae), as a potential grain protectant against Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch. Postharvest Biol Technol, 1996, 9: 41-48.

[14]

Kim TG, Kim MY, Yang MS. Cholera toxin B subunit-domain III of dengue virus envelope glycoprotein E fusion protein production in transgenic plants. Protein Expr Purif, 2010, 74: 236-241.

[15]

Lee DS. Dibutyl phthalate, a glucosidase inhibitor from Streptomyces melanosporofaciens. J Biosci Bioeng, 2000, 89: 271-273.

[16]

Li SJ, Zhu TH, Zhu HMY, Liang M, Qiao TM, Han S, Che GN. Purification of protein AP-toxin from Arthrinium phaeospermum causing blight in Bambusa pervariabilis × Dendrocalamopsis grandis and its metabolic effects on four bamboo varieties. Phytopathology, 2013, 103: 135-145.

[17]

Lin Z, Ikonomou MG, Jing H. Determination of phthalate ester congeners and mixtures by LC/ESI-MS in sediments and biota of an urbanized marine inlet. Environ Sci Technol, 2003, 37: 2100-2108.

[18]

Lorenz N, Haarmann T, Pažoutová S, Jung M, Tudzynski P. The ergot alkaloid gene cluster: functional analyses and evolutionary aspects. Phytochemistry, 2009, 70: 1822-1832.

[19]

Ma GL, Hu GL, Yu CZ, Wu JL, Xu BC. Phyllostachys prominens plum shoot wilt pathogenic fungoid and it s biological characteristics. J Zhejiang For Coll, 2003, 20: 44-48.

[20]

Meca G, Sospedra I, Soriano JM, Ritieni A, Valero MA, Mañes J. Isolation, purification and antibacterial effects of fusaproliferin produced by Fusarium subglutinans in submerged culture. Food Chem Toxicol, 2009, 47: 2539-2543.

[21]

Ostry ME, Anderson NA. Genetics and ecology of the Entoleuca mammataPopulus pathosystem: b Implications for aspen improvement and management. For Ecol Manag, 2009, 257: 390-400.

[22]

Patyna P, Cooper KR. Multigeneration reproductive effects of three phthalate esters in Japanese medaka (Oryzias latipes). Mar Environ Res, 2000, 50 194

[23]

Pedersen BF, Larsen R (1996) Identification of agricultural crops in Denmark by satellite Imagery. In: Proceedings, NJF seminar, report of the Finnish Geodetic Institute. Finnish Agricultural Research Centre, Jokoinen, vol 96, pp 4–8

[24]

Peijnenburg W, Struijs J. Occurrence of phthalate esters in the environment of the Netherlands. Ecotoxicol Environ Safe, 2006, 63: 204-215.

[25]

Pestka JJ, Bahrawy AE, Hart LP. Deoxynivalenol and 15-monoacetyl deoxynivalenol production by Fusarium graminearum R6576 in liquid media. Mycopathologia, 1985, 91: 23-28.

[26]

Raoudha BAM, Samiha S, Lilia FBF. Purification and structure determination of four bioactive molecules from a newly isolated Streptomyces sp. TN97 strain. Process Biochem, 2006, 41: 1506-1513.

[27]

Rattan RS. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot, 2010, 29: 913-920.

[28]

Roy RN, Laskar S, Sen SK. Dibutyl phthalate, the bioactive compound produced by Streptomyces albidoflavus 321.2. Microbiol Res, 2006, 161: 121-126.

[29]

Ruikar AD, Gadkari TV, Phalgune UD, Puranik VG, Deshpande NR. Dibutyl phthalate, a secondary metabolite from Mimusops elengi. Chem Nat Compd, 2010, 46: 955-956.

[30]

Savard ME, Miller JD, Blais LA, Seifert KA, Samson RA. Secondary metabolites of Penicillium bilaii strain PB-50. Mycopathologia, 1994, 127: 19-27.

[31]

Shi Y, Tian L, Pei YH. The chemical constituents from the mycelia of marine fungus Rhizopus sp.. Chin J Med Chem, 2005, 15: 221-223.

[32]

Shizawa H, Takahashi M, Takaatsu T. Trachyspic acid, a new metabolite produced by Talaromyces trachyspermus that inhibits tumourcell heparanase. J Antibiot, 1995, 48: 357-363.

[33]

Staples CA, Wenrner AF, Hoogheem TJ. Assessment of priority poiiutant concentrations in the United States using STORET database. Environ Toxicol Chem, 1985, 4: 131-142.

[34]

Ueno Y, Sato N, Ishii K. Biological and chemical detection of trichothecene mycotoxins of Fusarium species. Apply Environ Microbiol, 1973, 25: 699-704.

[35]

Uhlig S, Petersen D, Rolèn E, Jacobsen WE, Vrälstad T. Ergosedmine, a new peptide ergot alkaloid (ergopeptine) from the ergot fungus, Claviceps purpurea parasitizing Calamagrostis arundinacea. Phytochem Lett, 2010, 167: 1-7.

[36]

Vijayakumar EK, Roy K, Chatterjee S. Arthrichitin. A new cell wall active metabolite from Arthrinium phaeospermum. J Org Chem, 1996, 61: 6591-6593.

[37]

Xia LM, Zhang SX, Huang JH. Studies on Arthrinium phaeospermum causing moso bamboo foot rot. J Nanjing For Univ, 1995, 16: 23-28.

[38]

Xu LS, Jia JG, Lv J, Liang XF, Han DJ, Huang LL, Kang ZS. Characterization of the expression profile of a wheat aci-reductone-dioxygenase-like gene in response to stripe rust pathogen infection and abiotic stresses. Plant Physiol Biochem, 2010, 48: 461-468.

[39]

Yuan SY, Liu C, Liao CS. Occurrence and microbial degradation of phthalate esters in Taiwan river sediments. Chemosphere, 2002, 49: 1295-1299.

[40]

Zhang YS. Plant pathology and pathophysiology. 1996, Nanjing: Jiangsu Technology Press, 56.

[41]

Zhang LH, Liu YH, Dong JG. Isolation and purification of specific toxin factions produced by Exserohdum tareicum. Acta Phytopathol Sin, 2003, 33: 67-71.

[42]

Zhu TH, Luo MJ, Ye HZ. Isolation and purification of Pf-toxin from Pestalotia funerea. Acta Phytopathol Sin, 2003, 33: 541-545.

[43]

Zhu TH, Ye HZ, Luo MJ. The chemical composition of Pf-toxin from Pestalotia funerea. Struct Pathog Mater I Mycosystema, 2005, 24: 112-115.

[44]

Zhu TH, Huang ZC, Gao QZ, Li FL, Luo LJ, Li XD. Pathogen and occurrence regularity of Bambusa ervariabilis × Dendrocalamopsis daii blight. For Pest Dis, 2009, 28: 10-12.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/