The type, position and age effect on the cutting reproduction of Picea crassifolia and its rooting mechanism in the Qilian Mountains
Jianjun Kang , Wenzhi Zhao , Ming Zhao , Guangyu Li , Jiqiang Zhang , Zhisheng Zhang
Journal of Forestry Research ›› 2015, Vol. 26 ›› Issue (4) : 993 -1002.
The type, position and age effect on the cutting reproduction of Picea crassifolia and its rooting mechanism in the Qilian Mountains
Picea crassifolia Kom, a perennial arbor species is recognized as one of the most adaptable plants found to date in Qilian Mountains. To explore the cutting reproduction technology of P. crassifolia and reveal its rooting mechanism, cuttings of P. crassifolia with different cutting types (softwood, hardwood and root), positions (top, upper, middle and bottom) and ages (7, 10, 15, 20, 25 year-old) were cultivated in a field experiment. One-year old softwood and hardwood cuttings were collected from 7-, 10-, 15-, 20-, and 25 year-old healthy ortets to analyze the changes from endogenous hormones and organic nutrients. Results indicate that the softwood cuttings (0.5–1.0 cm in diameter) from upper branches of 15 year-old ortets shows better growth performance by improving rooting indexes, including a significant increase in rooting rate and a decrease in basal rot rate. Concomitantly, increasing rooting quantity and root length also increased. It is noteworthy that the high rooting rate of P. crassifolia cuttings due to its ability to accumulate high concentrations of indole-3-acetic acid (IAA) and total carbon (TC) rather than abscisic acid (ABA) and total nitrogen (TN). The rooting rate was mainly regulated by the IAA/ABA and TC/TN ratio. In summary, our results suggest that the softwood cuttings (0.5–1.0 cm in diameter) from upper branches of 15 year-old P. crassifolia can be considered as an effective strategy to improve cutting rooting rate, and the IAA/ABA and TC/TN ratio was one of the main factors limiting the cutting rooting rate of P. crassifolia.
Picea crassifolia Kom / Type / Position and age effect / Cutting reproduction / Rooting rate / Hormones / Organic substances
| [1] |
|
| [2] |
Bengt B (1981) Large scale propagation of Norway spruce (Picea abies (L). Karst.) by cuttings. Symposium on clone forestry. Uppsala, Sweden, 33–56 |
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
Du GZ, Zhou FY (2007) The status review of conventional vegetative propagation of conifers. Protect For Sci Technol, supplement: 46–48 |
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
Talbert CB, Ritchie GA, Gupta P (1993) Conifer vegetative propagation: an overview from a commercialization perspective. In: Ahuja M R, Libby W J. Clone forestry, genetics and biotechnology, Springer, Berlin Heidelberg 145–181 |
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
/
| 〈 |
|
〉 |