Drone remote sensing for forestry research and practices
Lina Tang , Guofan Shao
Journal of Forestry Research ›› 2015, Vol. 26 ›› Issue (4) : 791 -797.
Drone remote sensing for forestry research and practices
Drones of various shapes, sizes, and functionalities have emerged over the past few decades, and their civilian applications are becoming increasingly appealing. Flexible, low-cost, and high-resolution remote sensing systems that use drones as platforms are important for filling data gaps and supplementing the capabilities of crewed/manned aircraft and satellite remote sensing systems. Here, we refer to this growing remote sensing initiative as drone remote sensing and explain its unique advantages in forestry research and practices. Furthermore, we summarize the various approaches of drone remote sensing to surveying forests, mapping canopy gaps, measuring forest canopy height, tracking forest wildfires, and supporting intensive forest management. The benefits of drone remote sensing include low material and operational costs, flexible control of spatial and temporal resolution, high-intensity data collection, and the absence of risk to crews. The current forestry applications of drone remote sensing are still at an experimental stage, but they are expected to expand rapidly. To better guide the development of drone remote sensing for sustainable forestry, it is important to systematically and continuously conduct comparative studies to determine the appropriate drone remote sensing technologies for various forest conditions and/or forestry applications.
Drone / Remote sensing / UAV / UAS / UA / RPA / Forest
| [1] |
Alberts K (2012) Landsat data characteristics and holdings. A presentation of USGS Landsat Ground System Lead (http://www.slideserve.com/keahi/landsat-data-characteristics-and-holdings) |
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
Frolking S, Palace MW, Clark DB, Chambers JQ, Hugart HH, Hurtt GC (2009) Forest disturbance and recovery: a general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure, J Geophys Res, 114: G00E02, doi: 10.1029/2008JG000911 |
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
Saari H, Antila T, Holmlund C, Mäkynen J, Ojala K, Toivanen H, Pellikka I, Tuominen S, Pesonen L, Heikkilä J (2011) Unmanned aerial vehicle (UAV) operated spectral camera system for forest and agriculture applications. In: Proceedings of the SPIE, 8174: id 81740H |
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
Tulldahl HM, Larsson H. 2014. Lidar on small UAV for 3D mapping. In: Proceedings of SPIE sponsored conference on electro-optical remote sensing, photonic technologies, and applications VIII; and military applications in hyperspectral imaging and high spatial resolution sensing II. Amsterdam, Netherlands, 22–23 Sep 2014 |
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
/
| 〈 |
|
〉 |