Natural enemies depend on remnant habitat size in agricultural landscapes

Mainara Xavier Jordani , Érica Hasui , Vinícius Xavier da Silva

Journal of Forestry Research ›› 2015, Vol. 26 ›› Issue (2) : 469 -477.

PDF
Journal of Forestry Research ›› 2015, Vol. 26 ›› Issue (2) : 469 -477. DOI: 10.1007/s11676-015-0043-y
Original Paper

Natural enemies depend on remnant habitat size in agricultural landscapes

Author information +
History +
PDF

Abstract

In recent decades, the consequences of habitat fragmentation have been of growing concern, because it is particularly important to understand how fragmentation may affect biodiversity, an ecological service. We tested two hypotheses: (1) that natural fragment size in agricultural landscapes indirectly affects the herbivore through effects on natural predator populations; and (2) predator activity into the crop reduces along the distance from the natural fragment edge. From 2008 and 2009, we conducted our study in seven forest remnants and in surrounding coffee plantations (fragments ranged from 6 to 105 ha, mean 49.28 ± 36.60 ha) in Southern Minas Gerais, Brazil. Birds were sampled by point counts, and insect predation was evaluated by using an artificial insect model (Koh and Menge 2006). Our results suggest that although there were many potential predators (e.g., wasps, ants, birds, and mammals), birds were the most important taxon unit. The covariance analysis supported the hypothesis that patch size affected the number of larvae predation by overall taxi, but there was no support for a distance effect. These findings suggest that natural enemies’ ecological service (mainly from birds) declined with remnant reduction, which has implications not only for human welfare, but also in strengthening the economic justifications for conserving the remaining natural habitats and biodiversity in agricultural landscapes.

Keywords

Ecosystem service / Fragmentation / Isolation / Insectivore / Predation

Cite this article

Download citation ▾
Mainara Xavier Jordani, Érica Hasui, Vinícius Xavier da Silva. Natural enemies depend on remnant habitat size in agricultural landscapes. Journal of Forestry Research, 2015, 26(2): 469-477 DOI:10.1007/s11676-015-0043-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Altegrim O. Exclusion of birds from bilberry stands: impact on insect larval density and damage to the bilberry. Oecologia, 1989, 79: 136-139.

[2]

Barbaro L, Battisti A. Birds as predators of the pine processionary moth (Lepidoptera: Notodontidae). Biol Control, 2011, 56(2): 107-114.

[3]

Bianchi FJJA, Wäckers FL. Effects of flower attractiveness and nectar availability in field margins on biological control by parasitoids. Biol Control, 2008, 46: 400-408.

[4]

Bianchi FJJA, Booij CJH, Tscharntke T. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc Biol Sci Ser B, 2006, 273(1595): 1715-1727.

[5]

Bianchi FJJA, Goedhart PW, Baveco JM. Enhanced pest control in cabbage crops near forest in The Netherlands. Landsc Ecol, 2008, 23(5): 595-602.

[6]

Borkhataria RR, Collazo JA, Groom MJ. Additive effects of vertebrate predators on insects in a Puerto Rican coffee plantation. Ecol Appl, 2006, 16(2): 696-703.

[7]

Burnham KP, Anderson DR. A practical information-theoretic approach, 2002 Second New York: Springer, 353.

[8]

Comitê Brasileiro de Registros Ornitológicos—CBRO (2011) Lista das aves do Brasil. 10th edn. CBRO. http://www.cbro.org.br. Accessed 15 Nov 2011

[9]

Connor EF, Courtney AC, Yoder JM. Individuals–area relationships: the relationship between animal population density and area. Ecology, 2000, 81(3): 734-748.

[10]

Costa CMR. Biodiversidade em Minas Gerais: um atlas para a sua conservação. 1998, Belo Horizonte: Fundação Biodiversitas, 222.

[11]

Cronin JT. Matrix heterogeneity and host-parasitoid interactions in space. Ecology, 2003, 84: 1506-1516.

[12]

Cronin JT, Haynes KJ, Dillemuth F. Spider effects on planthopper mortality, dispersal and spatial population dynamics. Ecology, 2004, 85: 2134-2143.

[13]

Daily GC. Daily G. Introduction: what are ecosystem services?. Nature’s services: societal dependence on natural ecosystems. 1997, Washington, D.C: Island Press, 1 10

[14]

Denno RF, Finke DL, Langellotto GA. Barbosa P, Castellanos I. Direct and indirect effects of vegetation structure and habitat complexity on predator–prey and predator–predator interactions. Ecology of predator–prey interactions. 2005, Oxford: Oxford University Press, 211 239

[15]

Develey P. Cullen L Jr, Rudran R, Valladares-Pádua C. Métodos com estudos com aves. Métodos de estudos em biologia da conservação e manejo da vida silvestre. 2003, Curitiba: Editora Universidade Federal do Paraná, 153 179

[16]

Fahrig L. Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Syst, 2003, 34: 487-515.

[17]

Fitzpatrick JW. Foraging behavior of neotropical tyrant flycatchers. Condor, 1980, 82(1): 43-57.

[18]

Fragoso DB, Jusselino-Filho P, Guedes RNC, Proque R. Seletividade de inseticidas a vespas predadoras de Leucoptera coffeella (Guér.-Mènev.) (Lepidoptera: Lyonetiidae). Neotrop Entomol, 2001, 30(1): 139-143.

[19]

Freitas AVL, Oliveira PS. Ants as selective agents on herbivore biology: effects on the behaviour of a non-myrmecophilous butterfly. J Anim Ecol, 1996, 65: 205-210.

[20]

Fundação SOS Mata Atlântica & (INPE) Instituto Nacional de Pesquisas Espaciais Atlas dos remanescentes florestais da Mata Atlântica, período de 2005–2008. 2009, São Paulo: Fundação SOS Mata Atlântica & São Jose dos Campos, INPE

[21]

Gomes VSM, Loiselle BA, Alves MAS. Birds foraging for fruits and insects in shrubby restinga vegetation, southeastern Brazil. Biota Neotrop, 2008, 8(4): 21-31.

[22]

Greenberg R, Bichier P, Angon AC, MacVean C, Perez R, Cano E. The impact of avian insectivory on arthropods and leaf damage in some guatemalan coffee plantations. Ecology, 2000, 81(6): 1750-1755.

[23]

Henle K, Davies KF, Kleyer M, Margules C, Settele J. Predictors of species sensitivity to fragmentation. Biodivers Conserv, 2004, 13: 207-251.

[24]

Johnson MD, Levy NJ, Kellermann JL, Robinson DE. Effects of shade and bird exclusion on arthropods and leaf damage on coffee farms in Jamaica’s Blue Mountains. Agrofor Syst, 2009, 76(1): 139-148.

[25]

Jonsson M, Wratten SD, Landis DA, Tompkins J-ML, Cullen R. Habitat manipulation to mitigate the impacts of invasive arthropod pests. Biol Invasions, 2010, 12(9): 2933-2945.

[26]

Kellermann JL, Johnson MD, Stercho AM, Hackett SC. Ecological and economic services provided by birds on Jamaican Blue Mountain coffee farms. Conserv Biol, 2008, 22(5): 1177-1185.

[27]

Klein A-M, Steffan-Dewenter I, Tscharntke T. Rain forest promotes trophic interactions and diversity of trap-nesting Hymenoptera in adjacent agroforestry. J Anim Ecol, 2006, 75(2): 315-323.

[28]

Koh LP, Menge DNL. Rapid assessment of Lepidoptera predation rates in neotropical forest fragments. Biotropica, 2006, 38(1): 132-134.

[29]

Landis DA, Wratten SD, Gurr GM. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol, 2000, 45: 175-201.

[30]

Langellotto GA, Denno RF. Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia, 2004, 139: 1-10.

[31]

Lomeli-Flores JR (2009) Natural enemies and mortality factors of the coffee leafminer Leucoptera coffeella (Guerin-Meneville) (Lepidoptera: Lyonetiidae) in Chiapas, México. PhD Dissertation, Texas A&M University, Texas, p 203

[32]

MacArthur RH, Wilson EO. The theory of island biogeography. 1967, Princeton: Princeton University Press, 203.

[33]

Oliveira Filho AT, Fontes MAL. Patterns of floristic differentiation among Atlantic Forests in Southeastern Brazil and the influence of climate. Biotropica, 2000, 32: 793-810.

[34]

Parra J. Biologia comparada de Leucoptera coffeella (Guérin-Méneville, 1842) (Lepidoptera: Lyonetiidae) visando o seu zoneamento ecológico no Estado de São Paulo. Rev Bras Entomol, 1985, 29: 45-76.

[35]

Pimentel D, Wilson C, McCullum C, Huang R, Dwen P, Flack J, Tran Q, Saltman T, Cliff B. Economic and environmental benefits of biodiversity. Bioscience, 1997, 47: 747-757.

[36]

Polis GA, Strong DR. Food web complexity and community dynamics. Am Nat, 1996, 147: 813-846.

[37]

Puckett HL, Brandle JR, Johnson RJ, Blankenship EE. Avian foraging patterns in crop field edges adjacent to woody habitat. Agric Ecosyst Environ, 2009, 131(1–2): 9-15.

[38]

Reis R Jr, Lima ER, Vilela EF, Evaldo F, Barros RS. Method for maintenance of coffee leaves in vitro for mass rearing of Leucoptera coffeellum (Guérin-Méneville) (Lepidoptera: Lyonetiidae). An Soc Entomol Bras, 2000, 29(4): 849-854.

[39]

Remsen JV, Robinson SK. A classification scheme for foraging behavior of birds in terrestrial habitats. Stud Avian Biol, 1990, 13: 144-160.

[40]

Ridgely RS, Tudor G. The birds of South America: volume 1: the suboscine passerines. 1994, Austin: University of Texas Press, 598.

[41]

Ridgely RS, Tudor G. The birds of South America: volume 2: the oscine passerines. 1997, Austin: University of Texas Press, 940.

[42]

Root RB. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleraceae). Ecol Monogr, 1973, 45: 95-120.

[43]

Sick H. Ornitologia brasileira. 2001, Rio de Janeiro: Nova Fronteira, 912.

[44]

Sodhi NS, Ehrlich PR. Conservation biology conservation biology for all. 2010, Oxford: Oxford University Press, 344

[45]

Stotz DF, Fitzpatrick JW, Parker TA III, Moskovitz DK. Neotropical birds: ecology and conservation. 1996, Chicago: University of Chicago Press, 502.

[46]

Strong DR. Are trophic cascades all wet? Differentiation and donor-control in species ecosystems. Ecology, 1992, 73: 747-754.

[47]

Strong DR, Sherry TW, Holmes RT. Bird predation on herbivorous insects: indirect effects on sugar maple saplings. Oecologia, 2000, 125: 370-379.

[48]

Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C. Diversity and productivity in a long-term grassland experiment. Science, 2001, 294: 843-845.

[49]

Tscharntke T, Rand TA, Bianchi FJJA. The landscape context of trophic interactions: insect spillover across the crop–noncrop interface. Ann Zool Fenn, 2005, 42: 421-432.

[50]

Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D, Rand TA, Tylianakis JM, Nouhuys SV, Vidal S. Conservation biological control and enemy diversity on a landscape scale. Biol Control, 2007, 43: 294-309.

[51]

Van Bael SA, Philpott SM, Greenberg R, Bichier P, Barber NA, Mooney KA, Gruner DS. Birds as predators in tropical agroforestry systems. Ecology, 2008, 89(4): 928-934.

[52]

Vergara PM, Hahn I. Linking edge effects and patch size effects: importance of matrix nest predators. Ecol Model, 2009, 220(9–10): 1189-1196.

[53]

Whelan CJ, Wenny DG, Marquis RJ. Ecosystem services provided by birds. Ann N Y Acad Sci, 2008, 1134: 25-60.

[54]

Willis EO. The composition of avian communities in remanescent woodlots in southern Brazil. Pap Avulsos Zool (Sao Paulo), 1979, 33(1): 1-25.

[55]

With KA. Threshold effects of landscape structure on biological control in agroecosystems. Ecol Appl, 2002, 13(1): 314-365.

[56]

Zambolim L, Conceição MZD, Santiago T. O que engenheiros agrônomos devem saber para orientar o uso de produtos fitossanitários, 2008 3a ANDEF, Viçosa: Universidade Federal de Viçosa, 464.

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/