Development and transferability of two multiplexes nSSR in Scots pine (Pinus sylvestris L.)

Stefana Ganea , Sonali S. Ranade , David Hall , Sara Abrahamsson , María Rosario García-Gil

Journal of Forestry Research ›› 2015, Vol. 26 ›› Issue (2) : 361 -368.

PDF
Journal of Forestry Research ›› 2015, Vol. 26 ›› Issue (2) : 361 -368. DOI: 10.1007/s11676-015-0042-z
Original Paper

Development and transferability of two multiplexes nSSR in Scots pine (Pinus sylvestris L.)

Author information +
History +
PDF

Abstract

Single sequence repeat (SSR) multiplexing is a semi high-throughput PCR methodology for the analysis of multiple SSRs. We developed two SSR multiplexes selected from SSR loci previously reported in the pine literature and tested the transferability of both SSR multiplexes in nine other pine species. We tested 234 nuclear SSR loci (nSSRs) previously described in the pine literature and selected ten nSSRs following the simple criteria of interpretability and reproducibility. Selected nuclear loci were divided into two nSSRs multiplex sets and their amplification was optimized for three different multiplex PCR methods based on: (a) a custom PCR protocol, (b) a custom protocol with hotstart taq polymerase, and (c) a commercially available kit for SSR multiplexing. To validate their performance, the level of genetic diversity was assessed in three Scots pine natural populations (Hungary, northern Sweden and southern Sweden). In addition, we also tested the transferability of these multiplexes in nine other pine species. We have developed two nSSRs multiplexes of five loci each that will contribute to reduce the costs of nSSR scoring, while increasing the capacity of nSSR loci analysis. Amplification was successful in all three populations (94 % success) and the level of polymorphism (7.1 alleles/marker) was similar to that previously reported for other Scots pine natural populations. Transferability of both multiplexes was successful for those pine species closely related to Scots pine.

Keywords

Genetic diversity / Nuclear SSR / SSR multiplex / Scots pine

Cite this article

Download citation ▾
Stefana Ganea, Sonali S. Ranade, David Hall, Sara Abrahamsson, María Rosario García-Gil. Development and transferability of two multiplexes nSSR in Scots pine (Pinus sylvestris L.). Journal of Forestry Research, 2015, 26(2): 361-368 DOI:10.1007/s11676-015-0042-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A′Hara SW, Cottrell JE. A set of microsatellite markers for use in Sitka spruce (Picea sitchensis) developed from Picea glauca ESTs. Mol Ecol Notes, 2004, 4: 659-663.

[2]

Auckland LD, Bui T, Zhou Y, Shepard M, Williams CG. Conifer microsatellite handbook. 2002, Raleigh: Corporate Press

[3]

Bell JC, Powell M, et al. DNA profiling, pedigree lineage analysis and monitoring in the australian breeding program of Radiata pine. Silvae Genet, 2004, 53: 130-134.

[4]

Buchan JC, Archie EA, Van Horn RC, Moss CJ, Alberts SC. Locus effects and sources of error in noninvasive genotyping. Mol Ecol Notes, 2005, 5: 680-683.

[5]

Campoy JA, Martinez-Gomez P, Ruiz D, Rees J, Celton JM. Developing microsatellite multiplex and megaplex PCR systems for high-throughput characterization of breeding progenies and linkage maps spanning the apricot (Prunus armeciaca L.) genome. Plant Mol Biol Rep, 2010, 28: 560-568.

[6]

Chagné D,Chaumeil P, Ramboer A, Collada C, Guevara A, Cervera MT, Vendramin GG, Garcia V, Frigerio JM, Echt C, Richardson T, Plomion C (2004) Cross-species transferability and mapping of genomic and cDNA SSRs in pines. Theor Appl Genet 109:1204–1214. doi:10.1007/s00122-004-1683-z

[7]

Chamberlain JS, Gibbs RA, Rainer JE, Nguye PN, Thomas C. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res, 1988, 16: 11141-11156.

[8]

Coburn JR, Temnykh SV, Paulb EM, McCouch SR. Design and application of microsatellite marker panels for semi-automated genotyping of rice (Oryza sativa L.). Crop Sci, 2002, 42: 2092-2099.

[9]

Devey ME, Bell JC, Uren TL, Moran GF. A set of microsatellite markers for fingerprinting and breeding applications in Pinus radiata. Genome, 2002, 45: 984-989.

[10]

Diwan N, Cregan PB. Automated sizing of fluorescent-labeled simple sequence repeat (SSR) markers to assay genetic variation in soybean. Theor Appl Genet, 1997, 95: 723-733.

[11]

Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS (1991) Touchdown PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19:4008. doi:10.1093/nar/19.14.4008

[12]

Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull, 1987, 19: 11-15.

[13]

Dzialuk A, Chybicki I, Burczyk J. PCR multiplexing of nuclear microsatellite loci in Quercus species. Plant Mol Biol Rep, 2005, 23: 121-128.

[14]

Echt C, Burns R (1999) SSR derived from Pinus taeda ESTs. http://dendrome.ucdavis.edu/dendrome_genome/ssr-est.html. Accessed 21 March 2008

[15]

Echt CS, Saha S, Krutovsky KV, Wimalanathan K, Erpelding JE, Liang C, Nelson CD. An annotated genetic map of loblolly pine based on microsatellite and cDNA markers. BMC Genet, 2011, 12 17

[16]

Ellegren H. Microsatellites: simple sequences with complex evolution. Nat Rev Genet, 2004, 5: 435-445.

[17]

Epperson BK, Chung MG, Telewski FW. Spatial pattern of allozyme variation in a contact zone of Pinus ponderosa and P-arizonica (Pinaceae). Am J Bot, 2003, 90: 25-31.

[18]

Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform, 2005, 1: 47-50.

[19]

Fisher PJ, Richardson TE, Gardner RC. Characteristics of single- and multi-copy microsatellites from Pinus radiata. Theor Appl Genet, 1998, 96: 969-979.

[20]

Frey JE, Frey B, Sauer C, Kellerhals M. Efficient low-cost DNA extraction and multiplex fluorescent PCR method for marker-assisted selection in breeding. Plant Breed, 2004, 123: 554-557.

[21]

García-Gil MR, Olivier F, Kamruzzahan S, Waldmann P (2009) Joint analysis of spatial genetic structure and inbreeding in a managed population of Scots pine. Heredity 103:90–96. doi:10.1038/hdy.2009.33

[22]

Gernandt DS, Lopez GG, López GG, García SO, Liston A. Phylogeny and classification of Pinus. Taxon, 2005, 54: 29-42.

[23]

Goldstein DB, Schlötterer C. Microsatellites: evolution and applications. 1999, Oxford: Oxford University Press

[24]

Gugerli F, Ruegg M, Vendramin GG. Gradual decline in genetic diversity in Swiss stone pine populations (Pinus cembra) across Switzerland suggests postglacial re-colonization into the Alps from a common eastern glacial refugium. Bot Helv, 2009, 119: 13-22.

[25]

Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Salin F, Petit RJ (2011) Current trends in microsatellite genotyping. Mol Ecol Resour 11:591–611. doi:10.1111/j.1755-0998.2011.03014.x

[26]

Hayden MJ, Nguyen TM, Waterman A, McMichael GL, Chalmers KJ. Application of multiplex-ready PCR for fluorescence-based SSR genotyping in barley and wheat. Mol Breed, 2008, 21: 271-281.

[27]

Hill CR, Butler JM, Vallone P. A 26plex autosomal STR assay to aid human identity testing. J Forensic Sci, 2009, 54: 1008-1015.

[28]

Hoffman JI, Amos W. Microsatellite genotyping errors: detection approaches, common sources and consequences for paternal exclusion. Mol Ecol, 2004, 14(2): 599-612.

[29]

Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK. Microsatellite markers: an overview of the recent progress in plants. Euphytica, 2011, 177: 309-334.

[30]

Kalinowski ST, Taper ML. Maximum likelihood estimation of the frequency of null alleles at microsatellite loci. Conserv Genet, 2006, 7: 991-995.

[31]

Karhu A, Hurme P, Karjalainen M, Karvonen P, Kärkkäinen K, Neale D, Savolainen O (1996) Do molecular markers reflect patterns of differentiation in adaptive traits of conifers? Theor Appl Genet 93:215–221. doi:10.1007/BF00225748

[32]

Karhu A, Vogl C, Moran GF, Bell JC, Savolainen O. Analysis of microsatellite variation in Pinus radiata reveals effects of genetic drift but no recent bottlenecks. J Evol Biol, 2006, 19: 167-175.

[33]

Kashi Y, King D, Soller M. Simple sequence repeats as a source of quantitative genetic variation. Trends Genet, 1997, 13: 74-78.

[34]

Kawase D, Tsumura Y, Tomaru N, Seo A, Yumoto T. Genetic structure of an endemic Japanese conifer, Sciadopitys verticillata (Sciadopityaceae), by using microsatellite markers. J Hered, 2010, 101(3): 292-297.

[35]

Kostia S, Varvio SL, Vakkari P, Pulkkinen P. Microsatellite sequences in Pinus sylvestris. Genome, 1995, 38: 1244-1248.

[36]

Kutil BL, Williams CG. Triplet-repeat microsatellites shared among hard and soft pines. J Hered, 2001, 92: 327-332.

[37]

Li YC, Korol AB, Fahima T, Nevo E. Microsatellites within genes: structure, function, and evolution. Mol Biol Evol, 2004, 216: 991-1007.

[38]

Lian CL, Miwa M, Hogetsu T. Outcrossing and paternity analysis of Pinus densiflora (Japanese red pine) by microsatellite polymorphism. Heredity, 2001, 87: 88-98.

[39]

Liewlaksaneeyanawin C, Ritland C, El-Kassaby YA, Ritland K. Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs. Theor Appl Genet, 2004, 109: 361-369.

[40]

Lindqvist AK, Magnusson PK, Balciuniene J, Wadelius C, Lindholm E, Alarcón-Riquelme ME, Gyllensten UB (1996) Chromosome-specific panels of tri- and tetranucleotide microsatellite markers for multiplex fluorescent detection and automated genotyping: evaluation of their utility in pathology and forensics. Genome Res 6:1170–1176. doi:10.1101/gr.6.12.1170

[41]

Macaulay M, Ramsay L, Powell W, Waugh R. A representative, highly informative’genotyping set’ of barley SSRs. Theor Appl Genet, 2001, 102: 801-809.

[42]

Marshall HD, Newton C, Ritland K. Chloroplast phylogeography and evolution of highly polymorphic microsatellites in lodgepole pine (Pinus contorta). Theor Appl Genet, 2002, 104: 367-378.

[43]

Masi P, Spagnoletti Zeuli PL, Donini P. Development and analysis of multiplex microsatellite markers sets in common bean (Phaseolus vulgaris L.). Mol Breed, 2003, 11: 303-313.

[44]

Morgante M, Pfeiffer A, Costacurta A, Olivieri AM, Powell W, Vendramin GG, Rafalski JA (1996) Polymorphic simple sequence repeats in nuclear and chloroplast genomes: applications to the population genetics of trees. For Sci 49:233–238. doi:10.1007/978-94-011-3983-0_32

[45]

Parchman TL, Geist KS, Grahnen JA, Benkman CW, Buerkle CA (2010) Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. BMC Genom 11:180. doi:10.1186/1471-2164-11-180

[46]

Parida SK, Kalia SK, Kaul S, Dalal V, Hemaprabha G, Selvi A, Pandit A, Singh A, Gaikwad K, Sharma TR, Srivastava PS, Singh NK, Mohapatra T (2009) Informative genomic microsatellite markers for efficient genotyping applications in sugarcane. Theor Appl Genet 118(2):327–338. doi:10.1007/s00122-008-0902-4

[47]

Pelgas B, Beauseigle S, Acheré V, Jeandroz S, Bousquet J, Isabel N (2006) Comparative genome mapping among Picea glauca, P. mariana × P. rubens and P. abies, and correspondence with other Pinaceae. Theor Appl Genet 113:1371–1393. doi:10.1007/s00122-006-0354-7

[48]

Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238. doi:10.1007/BF00564200

[49]

Provan J, Powell W, Hollingsworth PM. Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol, 2001, 16: 142-147.

[50]

Pyhäjärvi T, Salmela MJ, Savolainen O (2008) Colonization routes of Pinus sylvestris inferred from distribution of mitochondrial DNA variation. Tree Genet Genomes 4:247–254. doi:10.1007/s11295-007-0105-1

[51]

Queller D, Strassmann J, Hughes CR. Microsatellites and kinship. Trends Ecol Evol, 1993, 8: 285-288.

[52]

Reed PW, Davies JL, Copeman JB, Bennett ST, Palmer SM, Pritchard LE, Gough SCL, Kawaguchi Y, Cordell HJ, Balfour KM, Jenkins SC, Powell EE, Vignal A, Todd JA (1994) Chromosome–specific microsatellite sets for fluorescence–based, semi–automated genome mapping. Nat Genet 7:390–395. doi:10.1038/ng0794-390

[53]

Robledo-Arnuncio JJ, Collada C, Alía R, Gil L. Genetic structure of montane isolates of Pinus sylvestris L. in a Mediterranean refugial area. J Biogeogr, 2005, 32: 595-605.

[54]

Robledo-Arnuncio JJ, Navascues M, González-Martínez SC, Gil L. Estimating gametic introgression rates in a risk assessment context: a case study with Scots pine relicts. Heredity, 2009, 103: 385-393.

[55]

Rousset F. GENEPOP ‘ 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Res, 2008, 8: 103-106.

[56]

Salzer K, Sebastiani F, Gugerli F, Buonamici A, Vendramin GG (2009) Isolation and characterization of polymorphic nuclear microsatellite loci in Pinus cembra L. Mol Ecol Res 9(3):858–861. doi:10.1111/j.1755-0998.2008.02396.x

[57]

Schwengel DA, Jedlicka AE, Nanthakumar EJ, Weber JL, Levitt RC (1994) Comparison of fluorescence-based semiautomated genotyping of multiple microsatellite loci with autoradiographic techniques. Genomics 22:46–54. doi:10.1006/geno.1994.1344

[58]

Sebastiani F, Pinzauti F, Kujala ST, Gonzalez-Martınez SC, Vendramin GG (2012) Novel polymorphic nuclear microsatellite markers for Pinus sylvestris L. Conserv Genet Res 4:231–234. doi:10.1007/s12686-011-9513-5

[59]

Sinclair WT, Morman JD, Ennos RA (1999) The postglacial history of Scots pine (Pinus sylvestris L.) in western Europe: evidence from mitochondrial DNA variation. Mol Ecol 81:83–88. doi:10.1046/j.1365-294X.1999.00527.x

[60]

Slavov GT, Howe GT, Yakovlev I, Edwards KJ, Krutovskii KV, Tuskan GA, Carlson JE, Strauss SH, Adams WT (2004) Highly variable SSR markers in Douglas-fir: Mendelian inheritance and map locations. Theor Appl Genet 108:873–880. doi:10.1007/s00122-003-1490-y

[61]

Soranzo N, Provan J, Powell W (1998) Characterization of microsatellite loci in Pinus sylvestris L. Mol Ecol 7:1260–1261

[62]

Staszkiewicz J (1970) History from the Tertiary to the Holocene. In: Scots Pine - Pinus sylvestris L. Nasze Drzewa Lesna, Monografie Popularnonau Kowe, vol 1, pp 7–25

[63]

Tang SX, Kishore VK, Knapp SJ. PCR-multiplexes for a genome-wide framework of simple sequence repeat marker loci in cultivated sunflower. Theor Appl Genet, 2003, 107: 6-19.

[64]

Tollefsrud MM, Sønstebø JH, Brochmann C, Johnsen Ø, Skrøppa T, Vendramin GG (2009) Combined analysis of nuclear and mitochondrial markers provide new insight into the genetic structure of North European Picea abies. Heredity 102:549–562. doi:10.1038/hdy.2009.16

[65]

Tommasini L, Batley J, Arnold GM, Cooke RJ, Donini P, Lee D, Law JR, Lowe C, Moule C, Trick M, Edwards KJ (2003) The development of multiplex simple sequence repeat (SSR) markers to complement distinctness, uniformity and stability testing of rape (Brassica napus L.) varieties. Theor Appl Genet 106:1091–1101. doi:10.1007/s00122-002-1125-8

[66]

Torimaru T, Wang XR, Fries A, Andersson B, Lindgren D (2009) Evaluation of pollen contamination in an advanced Scots pine seed orchard. Silvae Genet 58:262–269

[67]

Trivedi S. Microsatellites (SSRs): puzzles within puzzle. Indian J Biotechnol, 2004, 3: 331-347.

[68]

Vaughan SP, Russell K. Characterization of novel microsatellites and development of multiplex PCR for large-scale population studies in wild cherry, Prunus avium. Mol Ecol Notes, 2004, 4: 429-431.

[69]

Wagner S, Gerber S, Petit RJ. Two highly informative dinucleotide SSR multiplexes for the conifer Larix decidua (European larch). Mol Ecol Res, 2012, 12: 717-725.

[70]

Wahlund BS. The combination of populations and the appearance of correlation examined from the standpoint of the study of heredity. Hereditas, 1928, 11: 65-106.

[71]

Waldmann P, García-Gil MR, Sillanpää MJ. Comparing Bayesian estimates of genetic differentiation of molecular markers and quantitative traits: an application to Pinus sylvestris. Heredity, 2005, 94: 623-629.

[72]

Willis KJ, van Andel TH. Trees or no trees? The environments of central and eastern Europe during the Last Glaciation. Quat Sci Rev, 2004, 23: 2369-2387.

[73]

Xu F, Feng S, et al. Two highly validated SSR multiplexes (8-plex) for Euphrates’ poplar, Populus euphratica (Salicaceae). Mol Ecol Resour, 2013, 13(1): 144-153.

[74]

Zane L, Bargelloni L, et al. Strategies for microsatellite isolation: a review. Mol Ecol, 2002, 11: 1-16.

AI Summary AI Mindmap
PDF

184

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/