Long-term vegetation development on a wildfire slope in Innerzwain (Styria, Austria)

Bodo Malowerschnig , Oliver Sass

Journal of Forestry Research ›› 2014, Vol. 25 ›› Issue (1) : 103 -111.

PDF
Journal of Forestry Research ›› 2014, Vol. 25 ›› Issue (1) : 103 -111. DOI: 10.1007/s11676-014-0435-4
Original Paper

Long-term vegetation development on a wildfire slope in Innerzwain (Styria, Austria)

Author information +
History +
PDF

Abstract

Forest fires in mountainous areas can cause severe deforestation which can potentially trigger secondary natural hazards like debris falls and avalanches. We documented an extreme case study for the range of possible post-fire land cover (LC) dynamics. We investigated a 15-ha, steep (10°–65°) burnt slope in Styria (Austria) at elevation of 760°-113 m, which burned in 1946 and has not fully recovered to date. Seven 8-class legend LC maps were produced (1954, 1966, 1973, 1982, 1998, 2004, 2009) and integrated in a vector-based GIS, mainly by on-screen interpretation of aerial photos. Our aim was to clarify how post-wildfire LC dynamics take place on a severely damaged, steep slope and to give a basic projection of the future vegetation recovery process. The pre-fire Pinus sylvestris stands have been mainly replaced by Picea abies and Larix decidua. Regeneration proceeded mainly from the base of the slope upwards. All tree species together still cover no more than 40% of the slope after more than 60 years of recovery, while grassland communities and rock/debris areas have expanded. Multitemporal analysis showed a slow but steady increase in woodland cover. Degraded rock/debris areas, however, expanded as well because soil erosion and related debris flows remained active. Slope angle (with a threshold value of approx. 35-40°) seemed to control whether erosion or regeneration prevailed. According to a simple extrapolation, the slope will not reach its former condition before 2070. This extreme disturbance window of more than 120 years is owed to the steepness of the slope and to the shallow soils on dolomitic bedrock that were severely damaged by the fire. The neglect of any game fencing is a further factor slowing regeneration.

Keywords

wildfire / landcover change / temperate forest / aerial photos / soil degradation / vegetation development

Cite this article

Download citation ▾
Bodo Malowerschnig, Oliver Sass. Long-term vegetation development on a wildfire slope in Innerzwain (Styria, Austria). Journal of Forestry Research, 2014, 25(1): 103-111 DOI:10.1007/s11676-014-0435-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahlgren CE. Kozlowski TT, Ahlgren CE. Effects of fires on temperate forests: Northcentral United States. Fire and ecosystems. 1974, New York: Academic Press, 195 223

[2]

Amraoui M, Liberato Margarida LR, Calado TJ, DaCamara CC, Coelho LP, Trigo RM, Gouveia CM. Fire activity over Mediterranean Europe based on information from Meteosat-8. Forest Ecology and Management, 2013, 294: 62-72.

[3]

Austrian Forest Inventory. 2012. http://bfw.ac.at.

[4]

Balling RC, Meyer GA, Wells SG. Climate change in Yellowstone National Park: Is the drought-related risk of wildfires increasing?. Climate change, 1992, 22: 35-45.

[5]

Bell DT, Koch JM. Post-fire succession in the northern jarrah forest of Western Australia. Australian Journal of Ecology, 1980, 5(1): 9-14.

[6]

Certini G, Nocentini C, Knicker H, Afraioli P, Rumpel C. Wildfire effects on soil organic matter quantity and quality in two fire-prone Mediterranean pine forests. Geoderma, 2011, 167–168: 148-155.

[7]

Conedera M, Marxer P, Hofmann C, Tinner W, Ammann B. Forest fire research in Switzerland. Part 1. Fire ecology and history research in the southern part of Switzerland. International Forest Fire News, 1996, 15: 13-21.

[8]

Debano LF, Neary DG, Ffolliot PF. Fire’s Effects Oon Ecosystems. 1998, New York: John Wiley and Sons Inc., 333.

[9]

Flannigan MD, Van Wagner CE. Climate change and wildfire in Canada. Canadian Journal of Forest Research, 1991, 21(1): 66-72.

[10]

Goldammer JG, Price C. Potential impacts of climate change on fire regimes in the Tropics based on Magicc and a GISS GCM-Derived Lightning Model. Climatic Change, 1998, 39(2–3): 273-296.

[11]

Gossow H, Hafellner R, Vacik H, Huber T. Major fire issues in the Euro-Alpine region — the Austrian Alps. International Forest Fire News IFFN, 2009, 38: 1-10.

[12]

Jahn E, Schiechtl HM, Schimitschek G. Möglichkeiten der natürlichen und künstlichen Regeneration einer Waldbrandfläche in den Tiroler Kalkalpen (Possible ways of natural and artificial regeneration of a forest fire area in the Tyrolean Calcareous Alps). Berichte des Naturw.-Med. Ver. Innsbruck, Bnd., 1970, 58: 95-132.

[13]

Keeley JE, Lubin D, Fotheringham CJ. Fire and grazing impacts on plant diversity and alien plant invasions in the southern Sierra Nevada. Ecological Applications, 2003, 13: 1355-1374.

[14]

Lathrop RG Jr.. Impacts of the 1988 wildfires on the water quality of Yellowstone and Lewis Lakes, Wyoming. International Journal of Wildland Fire, 1994, 4: 169-175.

[15]

Meyer GA, Wells SG. Fire-related sedimentation events on alluvial fans, Yellowstone National Park, U.S.A. J Sediment Res, 1997, 67: 776-791.

[16]

Minshall GW, Brock JT. Keiter R B, Boyce M S. Observed and anticipated effects of forest fire on Yellowstone stream ecosystems. The Greater Yellowstone Ecosystem: Redefining America’s Wilderness Heritage. 1991, New Haven: CTL Yale Univ. Press, 123 135

[17]

Moreira F, Vaz P, Catry FX, Silva JS. Regional variations in wildfire susceptibility of land-cover types in Portugal: implications for landscape management to minimize fire hazard. International Journal of Wildland Fire, 2009, 18: 563-574.

[18]

Moreno JM, Oechel WC. The Role of fire in Mediterranean-type ecosystems. Ecological Studies, 1994, 107 201.

[19]

Moretti M, Duelli P, Obrist MK. Biodiversity and resilience of arthropod communities after fire disturbance in temperate forests. Oecologia, 2006, 149(2): 312-327.

[20]

Pausas JG, Vallejo VR. Chuvieco E. The role of fire in European Mediterranean ecosystems. Remote sensing of large wildfires in the European Mediterranean basin. 1999, Berlin: Springer, 3 16

[21]

Piñol J, Terradas J, Lloret F. Climate Warming, Wildfire Hazard, and Wildfire Occurrence in Coastal Eastern Spain. Climatic Change, 1998, 38(3): 345-357.

[22]

Sass O, Heel M, Leistner I, Stöger F, Wetzel K-F, Friedmann A. Disturbance, geomorphic processes and regeneration of wildfire slopes in North Tyrol. Earth Surface Processes and Landforms, 2012, 37(8): 883-889.

[23]

Sass O, Wetzel KF, Friedmann A. Landscape dynamics of subalpine forest fire slopes in the Northern Alps. Zeitschrift f. Geomorphologie, 2006, 142: 207-227.

[24]

Schönenberger W, Wasem U. Wiederbewaldung einer Waldbrandfläche in der subalpinen Stufe bei Müstair (Reforestation of a forest fire area in the sub-alpine belt near Müstair) Schweiz. Z. Forstwesen, 1997, 148(6): 405-424.

[25]

Schwitter R. Zur Verjüngung der Lärche in den Waldgesellschaften der kontinentalen Hochalpen — eine Zusammenfassung aus der Literatur (On the rejuvenation of larch trees in the forest communities of the continental high Alps — a summary from literature) May 2012, 1999

[26]

Shakesby RA, Boakes DJ, Coelho C, Gonçalves AJB, Walsh RPD. Limiting the soil degradation impacts of wildfire in pine and eucalyptus forests, Portugal: comparison of alternative post-fire management practices. Applied Geography, 1996, 16: 337-356.

[27]

Stähli M, Finsinger W, Tinner W, Allgöwer B. Wildfire history and fire ecology of the Swiss National Park (Central Alps) new evidence from charcoal, pollen and plant macrofossils. Holocene, 2006, 16(6): 805-817.

[28]

Tasser E, Tappeiner U. Klima-oder Landnutzungswandel: Wer bringt die große Veränderung? — Klimaerwärmung im Alpenraum, Raumberg-Gumpenstein, 2008

[29]

Tinner W, Hubschmid P, Wehrli M, Ammann B, Conedera M. Long-term forest fire ecology and dynamics in southern Switzerland. Journal of Ecology, 1999, 87: 273-289.

[30]

Treter U. Entwicklung der Vegetation und Bestandsstrukturen auf Waldbrandflächen des Flechten-Fichten-Waldlandes in Zentral-Labrador (Development of vegetation and stand structure in forest fire areas of lichen-spruce-forests in Central Labrador, Canada). Die Erde: Band, 1992, 123: 235-250.

[31]

Vacik H. Die Waldbrandsituation in Österreich 2002–2009, 2009

[32]

Vacik H, Arndt N, Arpaci A, Koch V, Muller M, Gossow H. Characterisation of forest fires in Austria. Austrian J For SCI, 2011, 128(1): 1-31.

[33]

Wasem U, Hester C, Wohlgemuth T. Waldverjüngung nach Feuer (Forest rejuvenation after fire). Wald und Holz, 2010, 91(1): 42-45.

[34]

Wasem U. Direktsaaten mit Keimhilfen, Eidg (Direct seeding with germination helpers), 2009

[35]

Willuweit J, Küttel P, Bütikofer D. Die europäische Lärche (the European Larch) — Larix decidua, Hochschule Wädenswil, Eidgenössische Forschungsanstalt WSL, 2003

[36]

Wohlgemuth T, Conedera M, Moretti M, Moser B. 2006. Ecological resilience after fire in mountain forests of the Central Alps. Forest Ecol. Manage. 234, Supp. 1, May 2012. Available at: http://www.wsl.ch/staff/thomas.wohlgemuth/papers/wo_etal2006b.pdf.

[37]

Wohlgemuth T, Duelli P, Ginzler C, Gödickemeier I, Hadorn S, Hagedorn F, Küttel P, Lüscher P, Moretti M, Schneiter G, Sciaccia S, Wermelinger B. Ökologische Resilienz nach Feuer: Die Waldbrandfläche Leuk als Modellfall (Ecological resilience after fire — the forest fire site Leuk as a model area). Schweiz. Z. Forstwes, 2005, 156: 345-352.

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/